IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v183y2020i3p1167-1187.html
   My bibliography  Save this article

Longevity forecasting by socio‐economic groups using compositional data analysis

Author

Listed:
  • S⊘ren Kjærgaard
  • Yunus Emre Ergemen
  • Marie‐Pier Bergeron‐Boucher
  • Jim Oeppen
  • Malene Kallestrup‐Lamb

Abstract

Several Organisation for Economic Co‐operation and Development countries have recently implemented an automatic link between the statutory retirement age and life expectancy for the total population to ensure sustainability in their pension systems due to increasing life expectancy. As significant mortality differentials are observed across socio‐economic groups, future changes in these differentials will determine whether some socio‐economic groups drive increases in the retirement age, leaving other groups with fewer pensionable years. We forecast life expectancy by socio‐economic groups and compare the forecast performance of competing models by using Danish mortality data and find that the most accurate model assumes a common mortality trend. Life expectancy forecasts are used to analyse the consequences of a pension system where the statutory retirement age is increased when total life expectancy is increasing.

Suggested Citation

  • S⊘ren Kjærgaard & Yunus Emre Ergemen & Marie‐Pier Bergeron‐Boucher & Jim Oeppen & Malene Kallestrup‐Lamb, 2020. "Longevity forecasting by socio‐economic groups using compositional data analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1167-1187, June.
  • Handle: RePEc:bla:jorssa:v:183:y:2020:i:3:p:1167-1187
    DOI: 10.1111/rssa.12555
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12555
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12555?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Edviges Coelho & Luis C. Nunes, 2011. "Forecasting mortality in the event of a structural change," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(3), pages 713-736, July.
    2. Nan Li & Ronald Lee, 2005. "Coherent mortality forecasts for a group of populations: An extension of the lee-carter method," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 575-594, August.
    3. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin & Coughlan, Guy D. & Epstein, David & Khalaf-Allah, Marwa, 2011. "Mortality density forecasts: An analysis of six stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 355-367, May.
    4. Marie-Pier Bergeron-Boucher & Vladimir Canudas-Romo & James E. Oeppen & James W. Vaupel, 2017. "Coherent forecasts of mortality with compositional data analysis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(17), pages 527-566.
    5. Søren Kjærgaard & Yunus Emre Ergemen & Malene Kallestrup‐Lamb & Jim Oeppen & Rune Lindahl‐Jacobsen, 2019. "Forecasting causes of death by using compositional data analysis: the case of cancer deaths," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(5), pages 1351-1370, November.
    6. Clark, Todd E. & West, Kenneth D., 2006. "Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 155-186.
    7. S. J. Richards, 2008. "Detecting year‐of‐birth mortality patterns with limited data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 279-298, January.
    8. Booth, H. & Tickle, L., 2008. "Mortality Modelling and Forecasting: a Review of Methods," Annals of Actuarial Science, Cambridge University Press, vol. 3(1-2), pages 3-43, September.
    9. Søren Kjærgaard & Yunus Emre Ergemen & Malene Kallestrup-Lamb & Jim Oeppen & Rune Lindahl-Jacobsen, 2019. "Forecasting Causes of Death using Compositional Data Analysis: the Case of Cancer Deaths," CREATES Research Papers 2019-07, Department of Economics and Business Economics, Aarhus University.
    10. Andrew Cairns & David Blake & Kevin Dowd & Guy Coughlan & David Epstein & Alen Ong & Igor Balevich, 2009. "A Quantitative Comparison of Stochastic Mortality Models Using Data From England and Wales and the United States," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(1), pages 1-35.
    11. Marie-Pier Bergeron-Boucher & Violetta Simonacci & Jim Oeppen & Michele Gallo, 2018. "Coherent Modeling and Forecasting of Mortality Patterns for Subpopulations Using Multiway Analysis of Compositions: An Application to Canadian Provinces and Territories," North American Actuarial Journal, Taylor & Francis Journals, vol. 22(1), pages 92-118, January.
    12. Booth, Heather, 2006. "Demographic forecasting: 1980 to 2005 in review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 547-581.
    13. France Meslé & Jacques Vallin, 2006. "Diverging Trends in Female Old‐Age Mortality: The United States and the Netherlands versus France and Japan," Population and Development Review, The Population Council, Inc., vol. 32(1), pages 123-145, March.
    14. Tibor F. Liska, 2007. "The Liska model," Society and Economy, Akadémiai Kiadó, Hungary, vol. 29(3), pages 363-381, December.
    15. Andrés Villegas & Steven Haberman, 2014. "On the Modeling and Forecasting of Socioeconomic Mortality Differentials: An Application to Deprivation and Mortality in England," North American Actuarial Journal, Taylor & Francis Journals, vol. 18(1), pages 168-193.
    16. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    17. Declan French & Colin O'Hare, 2014. "Forecasting Death Rates Using Exogenous Determinants," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(8), pages 640-650, December.
    18. Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
    19. Han Lin Shang, 2015. "Statistically tested comparisons of the accuracy of forecasting methods for age-specific and sex-specific mortality and life expectancy," Population Studies, Taylor & Francis Journals, vol. 69(3), pages 317-335, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kallestrup-Lamb, Malene & Søgaard Laursen, Nicolai, 2024. "Longevity hedge effectiveness using socioeconomic indices," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 242-251.
    2. Malene Kallestrup‐Lamb & Søren Kjærgaard & Carsten P. T. Rosenskjold, 2020. "Insight into stagnating adult life expectancy: Analyzing cause of death patterns across socioeconomic groups," Health Economics, John Wiley & Sons, Ltd., vol. 29(12), pages 1728-1743, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Søren Kjærgaard & Yunus Emre Ergemen & Marie-Pier Bergeron Boucher & Jim Oeppen & Malene Kallestrup-Lamb, 2019. "Longevity forecasting by socio-economic groups using compositional data analysis," CREATES Research Papers 2019-08, Department of Economics and Business Economics, Aarhus University.
    2. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    3. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
    4. Marie-Pier Bergeron-Boucher & Søren Kjærgaard & James E. Oeppen & James W. Vaupel, 2019. "The impact of the choice of life table statistics when forecasting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(43), pages 1235-1268.
    5. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    6. Rizzi, Silvia & Kjærgaard, Søren & Bergeron Boucher, Marie-Pier & Camarda, Carlo Giovanni & Lindahl-Jacobsen, Rune & Vaupel, James W., 2021. "Killing off cohorts: Forecasting mortality of non-extinct cohorts with the penalized composite link model," International Journal of Forecasting, Elsevier, vol. 37(1), pages 95-104.
    7. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    8. Hunt, Andrew & Blake, David, 2015. "Modelling longevity bonds: Analysing the Swiss Re Kortis bond," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 12-29.
    9. Christina Bohk-Ewald & Marcus Ebeling & Roland Rau, 2017. "Lifespan Disparity as an Additional Indicator for Evaluating Mortality Forecasts," Demography, Springer;Population Association of America (PAA), vol. 54(4), pages 1559-1577, August.
    10. Flici, Farrid, 2016. "Projection des taux de mortalité par âges pour la population algérienne [Forecasting The Age Specific Mortality Rates For The Algerian Population]," MPRA Paper 98784, University Library of Munich, Germany, revised Dec 2016.
    11. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2016. "Coherent modeling of male and female mortality using Lee–Carter in a complex number framework," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 130-137.
    12. Colin O’hare & Youwei Li, 2017. "Modelling mortality: are we heading in the right direction?," Applied Economics, Taylor & Francis Journals, vol. 49(2), pages 170-187, January.
    13. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    14. Norkhairunnisa Redzwan & Rozita Ramli, 2022. "A Bibliometric Analysis of Research on Stochastic Mortality Modelling and Forecasting," Risks, MDPI, vol. 10(10), pages 1-17, October.
    15. Shang, Han Lin & Haberman, Steven, 2017. "Grouped multivariate and functional time series forecasting:An application to annuity pricing," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 166-179.
    16. Tim J. Boonen & Hong Li, 2017. "Modeling and Forecasting Mortality With Economic Growth: A Multipopulation Approach," Demography, Springer;Population Association of America (PAA), vol. 54(5), pages 1921-1946, October.
    17. Shang, Han Lin & Haberman, Steven & Xu, Ruofan, 2022. "Multi-population modelling and forecasting life-table death counts," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 239-253.
    18. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    19. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2020. "A more meaningful parameterization of the Lee–Carter model," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 1-8.
    20. Liu, Yanxin & Li, Johnny Siu-Hang, 2018. "A strategy for hedging risks associated with period and cohort effects using q-forwards," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 267-285.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:183:y:2020:i:3:p:1167-1187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.