IDEAS home Printed from https://ideas.repec.org/r/cor/louvco/2011022.html
   My bibliography  Save this item

VAR forecasting using Bayesian variable selection

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Tsionas, Efthymios G. & Konstantakis, Konstantinos N. & Michaelides, Panayotis G., 2016. "Bayesian GVAR with k-endogenous dominants & input–output weights: Financial and trade channels in crisis transmission for BRICs," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 42(C), pages 1-26.
  2. SENBETA, Sisay Regassa, 2012. "How important are external shocks in explaining growth in Sub-Saharan Africa? Evidence from a Bayesian VAR," Working Papers 2012010, University of Antwerp, Faculty of Business and Economics.
  3. Chan, Joshua C.C. & Eisenstat, Eric & Koop, Gary, 2016. "Large Bayesian VARMAs," Journal of Econometrics, Elsevier, vol. 192(2), pages 374-390.
  4. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2013. "Time-varying combinations of predictive densities using nonlinear filtering," Journal of Econometrics, Elsevier, vol. 177(2), pages 213-232.
  5. Koop, Gary & Korobilis, Dimitris, 2016. "Model uncertainty in Panel Vector Autoregressive models," European Economic Review, Elsevier, vol. 81(C), pages 115-131.
  6. Zhe Yu & Raquel Prado & Erin Burke Quinlan & Steven C. Cramer & Hernando Ombao, 2016. "Understanding the Impact of Stroke on Brain Motor Function: A Hierarchical Bayesian Approach," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 549-563, April.
  7. Balcilar, Mehmet & Katzke, Nico & Gupta, Rangan, 2017. "Do precious metal prices help in forecasting South African inflation?," The North American Journal of Economics and Finance, Elsevier, vol. 40(C), pages 63-72.
  8. Lütkepohl, Helmut, 2014. "Structural vector autoregressive analysis in a data rich environment: A survey," SFB 649 Discussion Papers 2014-004, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  9. Dimitris, Korobilis, 2013. "Forecasting with Factor Models: A Bayesian Model Averaging Perspective," MPRA Paper 52724, University Library of Munich, Germany.
  10. Erlan Konebayev, 2023. "Forecasting a Commodity-Exporting Small Open Developing Economy Using DSGE and DSGE-BVAR," International Economic Journal, Taylor & Francis Journals, vol. 37(1), pages 39-70, January.
  11. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
  12. Zhou, Xiaocong & Nakajima, Jouchi & West, Mike, 2014. "Bayesian forecasting and portfolio decisions using dynamic dependent sparse factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 963-980.
  13. Gary Koop, 2012. "Using VARs and TVP-VARs with Many Macroeconomic Variables," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 4(3), pages 143-167, September.
  14. Florian Eckert & Nina Mühlebach, 2021. "Global and Local Components of Output Gaps," KOF Working papers 21-497, KOF Swiss Economic Institute, ETH Zurich.
  15. Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen M. Miller, 2015. "Was the recent downturn in US real GDP predictable?," Applied Economics, Taylor & Francis Journals, vol. 47(28), pages 2985-3007, June.
  16. Korobilis, Dimitris, 2013. "Bayesian forecasting with highly correlated predictors," Economics Letters, Elsevier, vol. 118(1), pages 148-150.
  17. Mandalinci, Zeyyad, 2017. "Forecasting inflation in emerging markets: An evaluation of alternative models," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1082-1104.
  18. Smith, Michael Stanley, 2015. "Copula modelling of dependence in multivariate time series," International Journal of Forecasting, Elsevier, vol. 31(3), pages 815-833.
  19. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
  20. Joshua C.C. Chan & Gary Koop & Roberto Leon-Gonzalez & Rodney W. Strachan, 2012. "Time Varying Dimension Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 358-367, January.
  21. Laséen, Stefan & Strid, Ingvar, 2013. "Debt Dynamics and Monetary Policy: A Note," Working Paper Series 283, Sveriges Riksbank (Central Bank of Sweden).
  22. Petre Caraiani, 2014. "Do money and financial variables help forecasting output in emerging European Economies?," Empirical Economics, Springer, vol. 46(2), pages 743-763, March.
  23. Kenichiro McAlinn & Knut Are Aastveit & Jouchi Nakajima & Mike West, 2020. "Multivariate Bayesian Predictive Synthesis in Macroeconomic Forecasting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1092-1110, July.
  24. Korobilis, Dimitris, 2014. "Data-based priors for vector autoregressions with drifting coefficients," SIRE Discussion Papers 2014-022, Scottish Institute for Research in Economics (SIRE).
  25. Matkovskyy, Roman, 2012. "The Index of the Financial Safety (IFS) of South Africa and Bayesian Estimates for IFS Vector-Autoregressive Model," MPRA Paper 42173, University Library of Munich, Germany.
  26. Billio, Monica & Casarin, Roberto & Rossini, Luca, 2019. "Bayesian nonparametric sparse VAR models," Journal of Econometrics, Elsevier, vol. 212(1), pages 97-115.
  27. Louzis Dimitrios P., 2016. "Steady-state priors and Bayesian variable selection in VAR forecasting," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(5), pages 495-527, December.
  28. Jouchi Nakajima & Mike West, 2013. "Bayesian Analysis of Latent Threshold Dynamic Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 151-164, April.
  29. Koop, Gary & Korobilis, Dimitris & Pettenuzzo, Davide, 2019. "Bayesian compressed vector autoregressions," Journal of Econometrics, Elsevier, vol. 210(1), pages 135-154.
  30. Sebastian Ankargren & Mårten Bjellerup & Hovick Shahnazarian, 2017. "The importance of the financial system for the real economy," Empirical Economics, Springer, vol. 53(4), pages 1553-1586, December.
  31. Michaelides, Panayotis G. & Tsionas, Efthymios G. & Konstantakis, Konstantinos N., 2018. "Debt Crisis in Europe (2001-2015): A Network General Equilibrium GVAR approach," MPRA Paper 89998, University Library of Munich, Germany.
  32. Gil-Alana, Luis A. & Gupta, Rangan & Olubusoye, Olusanya E. & Yaya, OlaOluwa S., 2016. "Time series analysis of persistence in crude oil price volatility across bull and bear regimes," Energy, Elsevier, vol. 109(C), pages 29-37.
  33. Joshua C.C. Chan & Eric Eisenstat & Rodney W. Strachan, 2018. "Reducing dimensions in a large TVP-VAR," CAMA Working Papers 2018-49, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  34. Byrne, Joseph P. & Korobilis, Dimitris & Ribeiro, Pinho J., 2016. "Exchange rate predictability in a changing world," Journal of International Money and Finance, Elsevier, vol. 62(C), pages 1-24.
  35. Jan Prüser, 2021. "Forecasting US inflation using Markov dimension switching," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 481-499, April.
  36. Gefang, Deborah & Koop, Gary & Poon, Aubrey, 2023. "Forecasting using variational Bayesian inference in large vector autoregressions with hierarchical shrinkage," International Journal of Forecasting, Elsevier, vol. 39(1), pages 346-363.
  37. Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2022. "Using hierarchical aggregation constraints to nowcast regional economic aggregates," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2022-04, Economic Statistics Centre of Excellence (ESCoE).
  38. Joshua C. C. Chan & Eric Eisenstat & Chenghan Hou & Gary Koop, 2020. "Composite likelihood methods for large Bayesian VARs with stochastic volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(6), pages 692-711, September.
  39. Zhang, Yaojie & Wahab, M.I.M. & Wang, Yudong, 2023. "Forecasting crude oil market volatility using variable selection and common factor," International Journal of Forecasting, Elsevier, vol. 39(1), pages 486-502.
  40. Kazi, Irfan Akbar & Wagan, Hakimzadi & Akbar, Farhan, 2013. "The changing international transmission of U.S. monetary policy shocks: Is there evidence of contagion effect on OECD countries," Economic Modelling, Elsevier, vol. 30(C), pages 90-116.
  41. Samuel F. Onipede & Nafiu A. Bashir & Jamaladeen Abubakar, 2023. "Small open economies and external shocks: an application of Bayesian global vector autoregression model," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(2), pages 1673-1699, April.
  42. Florian Huber & Gary Koop & Massimiliano Marcellino & Tobias Scheckel, 2024. "Bayesian modelling of VAR precision matrices using stochastic block networks," Papers 2407.16349, arXiv.org.
  43. Matkovskyy, Roman, 2012. "Прогнозування розвитку економіки України на основі баєсівських авторегресійних (BVAR) моделей з різними priors [Forecasting Economic Development of Ukraine based on BVAR models with different prior," MPRA Paper 44725, University Library of Munich, Germany, revised Nov 2012.
  44. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
  45. Nonejad, Nima, 2023. "Modeling the out-of-sample predictive relationship between equity premium, returns on the price of crude oil and economic policy uncertainty using multivariate time-varying dimension models," Energy Economics, Elsevier, vol. 126(C).
  46. Deborah Gefang & Gary Koop & Aubrey Poon, 2019. "Variational Bayesian Inference in Large Vector Autoregressions with Hierarchical Shrinkage," Discussion Papers in Economics 19/05, Division of Economics, School of Business, University of Leicester.
  47. Inske Pirschel & Maik H. Wolters, 2018. "Forecasting with large datasets: compressing information before, during or after the estimation?," Empirical Economics, Springer, vol. 55(2), pages 573-596, September.
  48. Roberto Casarin & Fausto Corradin & Francesco Ravazzolo & Nguyen Domenico Sartore & Wing-Keung Wong, 2020. "A Scoring Rule for Factor and Autoregressive Models Under Misspecification," Advances in Decision Sciences, Asia University, Taiwan, vol. 24(2), pages 66-103, June.
  49. Smith, Simon C. & Timmermann, Allan & Zhu, Yinchu, 2019. "Variable selection in panel models with breaks," Journal of Econometrics, Elsevier, vol. 212(1), pages 323-344.
  50. Korobilis, Dimitris, 2015. "Prior selection for panel vector autoregressions," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-73, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  51. Mihaela Simionescu, 2016. "Foreign Direct Investment and Sustainable Development. A Regional Approach for Romania," Working Papers of Macroeconomic Modelling Seminar 162702, Institute for Economic Forecasting.
  52. Koop, Gary & McIntyre, Stuart & Mitchell, James & Poon, Aubrey, 2024. "Using stochastic hierarchical aggregation constraints to nowcast regional economic aggregates," International Journal of Forecasting, Elsevier, vol. 40(2), pages 626-640.
  53. Jiawen Luo & Tony Klein & Thomas Walther & Qiang Ji, 2024. "Forecasting realized volatility of crude oil futures prices based on machine learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1422-1446, August.
  54. Benati, Luca & Chan, Joshua & Eisenstat, Eric & Koop, Gary, 2020. "Identifying noise shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
  55. Aijun Yang & Ju Xiang & Lianjie Shu & Hongqiang Yang, 2018. "Sparse Bayesian Variable Selection with Correlation Prior for Forecasting Macroeconomic Variable using Highly Correlated Predictors," Computational Economics, Springer;Society for Computational Economics, vol. 51(2), pages 323-338, February.
  56. Yang Aijun & Xiang Ju & Yang Hongqiang & Lin Jinguan, 2018. "Sparse Bayesian Variable Selection in Probit Model for Forecasting U.S. Recessions Using a Large Set of Predictors," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 1123-1138, April.
  57. Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2018. "Regional Output Growth in the United Kingdom: More Timely and Higher Frequency Estimates, 1970-2017," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-14, Economic Statistics Centre of Excellence (ESCoE).
  58. Annika Schnücker, 2016. "Restrictions Search for Panel VARs," Discussion Papers of DIW Berlin 1612, DIW Berlin, German Institute for Economic Research.
  59. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
  60. Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2020. "Regional output growth in the United Kingdom: More timely and higher frequency estimates from 1970," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(2), pages 176-197, March.
  61. Chan, Joshua C.C., 2013. "Moving average stochastic volatility models with application to inflation forecast," Journal of Econometrics, Elsevier, vol. 176(2), pages 162-172.
  62. Casarin, Roberto & Grassi, Stefano & Ravazzolo, Francesco & van Dijk, Herman K., 2015. "Parallel Sequential Monte Carlo for Efficient Density Combination: The DeCo MATLAB Toolbox," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(i03).
  63. Korobilis, Dimitris & Pettenuzzo, Davide, 2019. "Adaptive hierarchical priors for high-dimensional vector autoregressions," Journal of Econometrics, Elsevier, vol. 212(1), pages 241-271.
  64. Eric Eisenstat & Joshua C. C. Chan & Rodney W. Strachan, 2016. "Stochastic Model Specification Search for Time-Varying Parameter VARs," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1638-1665, December.
  65. Konstantakis, Konstantinos N. & Soklis, George & Michaelides, Panayotis G., 2017. "Tourism expenditures and crisis transmission: A general equilibrium GVAR analysis with network theory," Annals of Tourism Research, Elsevier, vol. 66(C), pages 74-94.
  66. Till Weigt & Bernd Wilfling, 2021. "An approach to increasing forecast‐combination accuracy through VAR error modeling," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(4), pages 686-699, July.
  67. Balcilar, Mehmet & Gupta, Rangan & Kotzé, Kevin, 2015. "Forecasting macroeconomic data for an emerging market with a nonlinear DSGE model," Economic Modelling, Elsevier, vol. 44(C), pages 215-228.
  68. Wilms, Ines & Croux, Christophe, 2016. "Forecasting using sparse cointegration," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1256-1267.
  69. Koop, Gary & Korobilis, Dimitris, 2013. "Large time-varying parameter VARs," Journal of Econometrics, Elsevier, vol. 177(2), pages 185-198.
  70. Albis, Manuel Leonard F. & Mapa, Dennis S., 2014. "Bayesian Averaging of Classical Estimates in Asymmetric Vector Autoregressive (AVAR) Models," MPRA Paper 55902, University Library of Munich, Germany.
  71. Prüser, Jan, 2017. "Forecasting US inflation using Markov dimension switching," Ruhr Economic Papers 710, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
  72. Mirriam Chitalu Chama-Chiliba & Rangan Gupta & Nonophile Nkambule & Naomi Tlotlego, 2011. "Forecasting Key Macroeconomic Variables of the South African Economy Using Bayesian Variable Selection," Working Papers 201132, University of Pretoria, Department of Economics.
  73. Ahlem DAHEM, 2016. "Short-Term Bayesian Inflation Forecasting For Tunisia: Some Empirical Evidence," EcoForum, "Stefan cel Mare" University of Suceava, Romania, Faculty of Economics and Public Administration - Economy, Business Administration and Tourism Department., vol. 5(1), pages 1-47, January.
  74. repec:hum:wpaper:sfb649dp2014-004 is not listed on IDEAS
  75. Kenichiro McAlinn & Knut Are Aastveit & Jouchi Nakajima & Mike West, 2020. "Multivariate Bayesian Predictive Synthesis in Macroeconomic Forecasting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1092-1110, July.
  76. Korobilis, Dimitris, 2016. "Prior selection for panel vector autoregressions," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 110-120.
  77. Schnücker, Annika, 2016. "Restrictions Search for Panel VARs," VfS Annual Conference 2016 (Augsburg): Demographic Change 145566, Verein für Socialpolitik / German Economic Association.
  78. Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen M. Miller, 2012. "Was the Recent Downturn in US GDP Predictable?," Working Papers 201230, University of Pretoria, Department of Economics.
  79. Michael S. Smith & Shaun P. Vahey, 2016. "Asymmetric Forecast Densities for U.S. Macroeconomic Variables from a Gaussian Copula Model of Cross-Sectional and Serial Dependence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 416-434, July.
  80. Michaelides, Panayotis G. & Tsionas, Efthymios G. & Konstantakis, Konstantinos N., 2018. "Debt dynamics in Europe: A Network General Equilibrium GVAR approach," Journal of Economic Dynamics and Control, Elsevier, vol. 93(C), pages 175-202.
  81. GABSZEWICZ, Jean & TAROLA, Ornella, 2011. "Migration, wage differentials and fiscal competition," LIDAM Discussion Papers CORE 2011065, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  82. repec:spo:wpmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
  83. Chan, Joshua C.C. & Eisenstat, Eric & Strachan, Rodney W., 2020. "Reducing the state space dimension in a large TVP-VAR," Journal of Econometrics, Elsevier, vol. 218(1), pages 105-118.
  84. Joshua C.C. Chan & Eric Eisenstat, 2015. "Efficient estimation of Bayesian VARMAs with time-varying coefficients," CAMA Working Papers 2015-19, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  85. Mehmet Balcilar & Rangan Gupta & Kevin Kotze, 2013. "Forecasting South African Macroeconomic Data with a Nonlinear DSGE Model," Working Papers 201313, University of Pretoria, Department of Economics.
  86. Nataliia Ostapenko, 2022. "Do output gap estimates improve inflation forecasts in Slovakia?," Working and Discussion Papers WP 4/2022, Research Department, National Bank of Slovakia.
  87. Monica Billio & Roberto Casarin & Luca Rossini, 2016. "Bayesian nonparametric sparse seemingly unrelated regression model (SUR)," Working Papers 2016:20, Department of Economics, University of Venice "Ca' Foscari".
  88. Ramazan EKİNCİ & Osman TÜZÜN & Fatih CEYLAN & Hakan KAHYAOĞLU, 2017. "Dışa Açıklık ile İşsizlik Arasındaki İlişki: Seçilmiş AB Ülkeleri ve Türkiye Üzerine Zamana Göre Değişen Parametreli Bir Analiz Algıları," Sosyoekonomi Journal, Sosyoekonomi Society, issue 25(31).
  89. Koop, Gary, 2014. "Forecasting with dimension switching VARs," International Journal of Forecasting, Elsevier, vol. 30(2), pages 280-290.
  90. D. Tutberidze & D. Japaridze, 2017. "Macroeconomic Forecasting Using Bayesian Vector Autoregressive Approach," Вестник Киевского национального университета имени Тараса Шевченко. Экономика., Socionet;Киевский национальный университет имени Тараса Шевченко, vol. 2(191), pages 42-49.
  91. Follett, Lendie & Yu, Cindy, 2019. "Achieving parsimony in Bayesian vector autoregressions with the horseshoe prior," Econometrics and Statistics, Elsevier, vol. 11(C), pages 130-144.
  92. Juan Laborda & Sonia Ruano & Ignacio Zamanillo, 2023. "Multi-Country and Multi-Horizon GDP Forecasting Using Temporal Fusion Transformers," Mathematics, MDPI, vol. 11(12), pages 1-26, June.
  93. Michelle, Gilmartin, 2016. "A note on the identification and transmission of energy demand and supply shocks," MPRA Paper 76186, University Library of Munich, Germany.
  94. Florian Eckert & Nina Mühlebach, 2023. "Global and local components of output gaps," Empirical Economics, Springer, vol. 65(5), pages 2301-2331, November.
  95. Daniel R. Kowal & David S. Matteson & David Ruppert, 2019. "Functional Autoregression for Sparsely Sampled Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 97-109, January.
  96. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
  97. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
  98. Kim, Young Min & Lee, Seojin, 2020. "Exchange rate predictability: A variable selection perspective," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 117-134.
  99. Korobilis, Dimitris, 2018. "Machine Learning Macroeconometrics A Primer," Essex Finance Centre Working Papers 22666, University of Essex, Essex Business School.
  100. repec:hal:spmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
  101. Marcelo A. T. Aragão, 2021. "Blurred Crystal Ball: investigating the forecasting challenges after a great exogenous shock," Working Papers Series 549, Central Bank of Brazil, Research Department.
  102. Ping Wu & Gary Koop, 2022. "Fast, Order-Invariant Bayesian Inference in VARs using the Eigendecomposition of the Error Covariance Matrix," Working Papers 2310, University of Strathclyde Business School, Department of Economics.
  103. Dahem, Ahlem, 2015. "Short term Bayesian inflation forecasting for Tunisia," MPRA Paper 66702, University Library of Munich, Germany.
  104. Drachal, Krzysztof, 2021. "Forecasting crude oil real prices with averaging time-varying VAR models," Resources Policy, Elsevier, vol. 74(C).
  105. Julius Stakenas, 2018. "Slicing up inflation: analysis and forecasting of Lithuanian inflation components," Bank of Lithuania Working Paper Series 56, Bank of Lithuania.
  106. Huang, Y-F., 2012. "Forecasting Chinese inflation and output: A Bayesian vector autoregressive approach," MPRA Paper 41933, University Library of Munich, Germany.
  107. Roman Matkovskyy, 2019. "Extremal Economic (Inter)Dependence Studies: A Case of the Eastern European Countries," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(3), pages 667-698, September.
  108. David Alan Peel & Pantelis Promponas, 2016. "Forecasting the nominal exchange rate movements in a changing world. The case of the U.S. and the U.K," Working Papers 144439514, Lancaster University Management School, Economics Department.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.