IDEAS home Printed from https://ideas.repec.org/r/cdl/uctcwp/qt1gf1t128.html
   My bibliography  Save this item

Estimability in the Multinomial Probit Model

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Rendtel, Ulrich & Kaltenborn, Ulrich, 2004. "The stability of simulation based estimation of the multiperiod multinominal probit model with individual specific covariates," Discussion Papers 2004/5, Free University Berlin, School of Business & Economics.
  2. Michael Scheidler & Reinhard Hujer & Joachim Grammig, 2005. "Discrete choice modelling in airline network management," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(4), pages 467-486.
  3. Hisham S. El-Osta, 2018. "Strategies to Manage Risk and their Role in Impacting Economic Performance among Farm Households," Applied Economics and Finance, Redfame publishing, vol. 5(2), pages 49-64, March.
  4. Nirmale, Sangram Krishna & Pinjari, Abdul Rawoof, 2023. "Discrete choice models with multiplicative stochasticity in choice environment variables: Application to accommodating perception errors in driver behaviour models," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 169-193.
  5. Donald Boyd & Hamilton Lankford & Susanna Loeb & James Wyckoff, 2013. "Analyzing the Determinants of the Matching of Public School Teachers to Jobs: Disentangling the Preferences of Teachers and Employers," Journal of Labor Economics, University of Chicago Press, vol. 31(1), pages 83-117.
  6. Liesenfeld, Roman & Richard, Jean-François, 2010. "Efficient estimation of probit models with correlated errors," Journal of Econometrics, Elsevier, vol. 156(2), pages 367-376, June.
  7. Wall, Melanie M. & Liu, Xuan, 2009. "Spatial latent class analysis model for spatially distributed multivariate binary data," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3057-3069, June.
  8. Cohen, Michael, 2010. "A Structured Covariance Probit Demand Model," Research Reports 149970, University of Connecticut, Food Marketing Policy Center.
  9. Heng Z. Chen & Frank Lupi & John P. Hoehn, 1999. "An Empirical Assessment of Multinomial Probit and Logit Models for Recreation Demand," Chapters, in: Joseph A. Herriges & Catherine L. Kling (ed.), Valuing Recreation and the Environment, chapter 5, pages 141-162, Edward Elgar Publishing.
  10. Chiara Monfardini & Joao Santos Silva, 2008. "What can we learn about correlations from multinomial probit estimates?," Economics Bulletin, AccessEcon, vol. 3(28), pages 1-9.
  11. Paul Gertler & Roland Sturm & Bruce Davidson, 1994. "Information and the Demand for Supplemental Medicare Insurance," NBER Working Papers 4700, National Bureau of Economic Research, Inc.
  12. Klaus Rennings & Andreas Ziegler & Thomas Zwick, 2004. "The effect of environmental innovations on employment changes: an econometric analysis," Business Strategy and the Environment, Wiley Blackwell, vol. 13(6), pages 374-387, November.
  13. Rub'en Loaiza-Maya & Didier Nibbering, 2022. "Fast variational Bayes methods for multinomial probit models," Papers 2202.12495, arXiv.org, revised Oct 2022.
  14. Josep‐Maria Arauzo‐Carod & Daniel Liviano‐Solis & Miguel Manjón‐Antolín, 2010. "Empirical Studies In Industrial Location: An Assessment Of Their Methods And Results," Journal of Regional Science, Wiley Blackwell, vol. 50(3), pages 685-711, August.
  15. Massimiliano Bratti, 2005. "Social Class and Undergraduate Degree Subject in the UK," UNIMI - Research Papers in Economics, Business, and Statistics unimi-1015, Universitá degli Studi di Milano.
  16. GRAMMIG, Joachim & HUJER, Reinhard & SCHEIDLER, Michael, 2001. "The econometrics of airline network management," LIDAM Discussion Papers CORE 2001055, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  17. Victoria Prowse, 2012. "Modeling Employment Dynamics With State Dependence and Unobserved Heterogeneity," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 411-431, April.
  18. Munkin, Murat K. & Trivedi, Pravin K., 2008. "Bayesian analysis of the ordered probit model with endogenous selection," Journal of Econometrics, Elsevier, vol. 143(2), pages 334-348, April.
  19. Darla Hatton MacDonald & Mark Morrison & Mary Barnes, 2010. "Willingness to Pay and Willingness to Accept Compensation for Changes in Urban Water Customer Service Standards," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 3145-3158, September.
  20. Ziegler, Andreas, 2001. "Simulated z-tests in multinomial probit models," ZEW Discussion Papers 01-53, ZEW - Leibniz Centre for European Economic Research.
  21. Young, Gary & Valdez, Emiliano A. & Kohn, Robert, 2009. "Multivariate probit models for conditional claim-types," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 214-228, April.
  22. Daziano, Ricardo A. & Achtnicht, Martin, 2012. "Forecasting adoption of ultra-low-emission vehicles using the GHK simulator and Bayes estimates of a multinomial probit model," ZEW Discussion Papers 12-017, ZEW - Leibniz Centre for European Economic Research.
  23. Ziegler Andreas, 2010. "Z-Tests in Multinomial Probit Models under Simulated Maximum Likelihood Estimation: Some Small Sample Properties," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 230(5), pages 630-652, October.
  24. Karthik K. Srinivasan & Hani S. Mahmassani, 2005. "A Dynamic Kernel Logit Model for the Analysis of Longitudinal Discrete Choice Data: Properties and Computational Assessment," Transportation Science, INFORMS, vol. 39(2), pages 160-181, May.
  25. Friederike Paetz & Winfried J. Steiner, 2017. "The benefits of incorporating utility dependencies in finite mixture probit models," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(3), pages 793-819, July.
  26. Szép, Teodóra & van Cranenburgh, Sander & Chorus, Caspar G., 2022. "Decision Field Theory: Equivalence with probit models and guidance for identifiability," Journal of choice modelling, Elsevier, vol. 45(C).
  27. Asmussen, Katherine E. & Mondal, Aupal & Batur, Irfan & Dirks, Abbie & Pendyala, Ram M. & Bhat, Chandra R., 2024. "An investigation of individual-level telework arrangements in the COVID-era," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
  28. Hensher, David & Louviere, Jordan & Swait, Joffre, 1998. "Combining sources of preference data," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 197-221, November.
  29. Daziano, Ricardo A., 2015. "Inference on mode preferences, vehicle purchases, and the energy paradox using a Bayesian structural choice model," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 1-26.
  30. Yai, Tetsuo & Iwakura, Seiji & Morichi, Shigeru, 1997. "Multinomial probit with structured covariance for route choice behavior," Transportation Research Part B: Methodological, Elsevier, vol. 31(3), pages 195-207, June.
  31. Xingcai Zhou & Xinsheng Liu, 2008. "The Monte Carlo EM method for estimating multinomial probit latent variable models," Computational Statistics, Springer, vol. 23(2), pages 277-289, April.
  32. Papola, Andrea & Tinessa, Fiore & Marzano, Vittorio, 2018. "Application of the Combination of Random Utility Models (CoRUM) to route choice," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 304-326.
  33. Joachim Grammig & Reinhard Hujer & Michael Scheidler, 2005. "Discrete choice modelling in airline network management," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(4), pages 467-486, May.
  34. Geweke, John & Keane, Michael P & Runkle, David, 1994. "Alternative Computational Approaches to Inference in the Multinomial Probit Model," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 609-632, November.
  35. McCulloch, Robert E. & Polson, Nicholas G. & Rossi, Peter E., 2000. "A Bayesian analysis of the multinomial probit model with fully identified parameters," Journal of Econometrics, Elsevier, vol. 99(1), pages 173-193, November.
  36. Müller, Tobias & Boes, Stefan, 2016. "Disability Insurance Benefits and Labor Supply Choices: Evidence from a Discontinuity in Benefit Awards," MPRA Paper 70957, University Library of Munich, Germany.
  37. Ruben Loaiza-Maya & Didier Nibbering, 2020. "Scalable Bayesian Estimation in the Multinomial Probit Model," Monash Econometrics and Business Statistics Working Papers 25/20, Monash University, Department of Econometrics and Business Statistics.
  38. Rennings, Klaus & Ziegler, Andreas & Zwick, Thomas, 2001. "Employment changes in environmentally innovative firms," ZEW Discussion Papers 01-46, ZEW - Leibniz Centre for European Economic Research.
  39. Tobias Müller & Stefan Boes, 2020. "Disability insurance benefits and labor supply decisions: evidence from a discontinuity in benefit awards," Empirical Economics, Springer, vol. 58(5), pages 2513-2544, May.
  40. Bolduc, Denis & Khalaf, Lynda & Moyneur, Érick, 2008. "Identification-robust simulation-based inference in joint discrete/continuous models for energy markets," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3148-3161, February.
  41. Laurent GOMEZ, 2024. "La mobilité quotidienne des immigrés en France," Region et Developpement, Region et Developpement, LEAD, Universite du Sud - Toulon Var, vol. 59, pages 79-107.
  42. Joan L. Walker & Moshe Ben-Akiva & Denis Bolduc, 2007. "Identification of parameters in normal error component logit-mixture (NECLM) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(6), pages 1095-1125.
  43. Garrido, Rodrigo A. & Leva, Mabel, 2004. "Port of destination and carrier selection for fruit exports: a multi-dimensional space-time multi-nomial probit model," Transportation Research Part B: Methodological, Elsevier, vol. 38(7), pages 657-667, August.
  44. Blake, Miranda R. & Dubey, Subodh & Swait, Joffre & Lancsar, Emily & Ghijben, Peter, 2020. "An integrated modelling approach examining the influence of goals, habit and learning on choice using visual attention data," Journal of Business Research, Elsevier, vol. 117(C), pages 44-57.
  45. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
  46. Tinessa, Fiore, 2021. "Closed-form random utility models with mixture distributions of random utilities: Exploring finite mixtures of qGEV models," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 262-288.
  47. Pablo M Garcia, 2005. "Una Aproximación Microeconométrica a los Determinantes de la Elección del Modo de Transporte. (A Microeconometric Approach to the Determinants of Travel Mode Choice)," Urban/Regional 0504005, University Library of Munich, Germany.
  48. Liesenfeld, Roman & Richard, Jean-François, 2010. "The dynamic invariant multinomial probit model: Identification, pretesting and estimation," Journal of Econometrics, Elsevier, vol. 155(2), pages 117-127, April.
  49. Rinus Haaijer & Michel Wedel & Marco Vriens & Tom Wansbeek, 1998. "Utility Covariances and Context Effects in Conjoint MNP Models," Marketing Science, INFORMS, vol. 17(3), pages 236-252.
  50. David Roodman, 2011. "Fitting fully observed recursive mixed-process models with cmp," Stata Journal, StataCorp LP, vol. 11(2), pages 159-206, June.
  51. Didier Nibbering, 2019. "A High-dimensional Multinomial Choice Model," Monash Econometrics and Business Statistics Working Papers 19/19, Monash University, Department of Econometrics and Business Statistics.
  52. Horowitz, Joel & Keane, Michael & Bolduc, Denis & Divakar, Suresh & Geweke, John & Gonul, Fosun & Hajivassiliou, Vassilis & Koppelman, Frank & Matzkin, Rosa & Rossi, Peter & Ruud, Paul, 1994. "Advances in Random Utility Models," MPRA Paper 53026, University Library of Munich, Germany.
  53. Langche Zeng, 2000. "A Heteroscedastic Generalized Extreme Value Discrete Choice Model," Sociological Methods & Research, , vol. 29(1), pages 118-144, August.
  54. Li, Xiaogu & Jensen, Kimberly L. & Clark, Christopher D. & Lambert, Dayton M., 2016. "Consumer willingness to pay for beef grown using climate friendly production practices," Food Policy, Elsevier, vol. 64(C), pages 93-106.
  55. Ziegler, Andreas, 2012. "Individual characteristics and stated preferences for alternative energy sources and propulsion technologies in vehicles: A discrete choice analysis for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1372-1385.
  56. David Roodman, 2009. "Estimating Fully Observed Recursive Mixed-Process Models with cmp," Working Papers 168, Center for Global Development.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.