IDEAS home Printed from https://ideas.repec.org/r/bno/worpap/2008_22.html
   My bibliography  Save this item

Combining inflation density forecasts

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2015. "Dynamic predictive density combinations for large data sets in economics and finance," Working Paper 2015/12, Norges Bank.
  2. Li, Li & Kang, Yanfei & Li, Feng, 2023. "Bayesian forecast combination using time-varying features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1287-1302.
  3. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2013. "Time-varying combinations of predictive densities using nonlinear filtering," Journal of Econometrics, Elsevier, vol. 177(2), pages 213-232.
  4. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
  5. Buncic, Daniel & Müller, Oliver, 2017. "Measuring the output gap in Switzerland with linear opinion pools," Economic Modelling, Elsevier, vol. 64(C), pages 153-171.
  6. Monticini, Andrea & Ravazzolo, Francesco, 2014. "Forecasting the intraday market price of money," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 304-315.
  7. Michal Franta & Jozef Barunik & Roman Horvath & Katerina Smidkova, 2011. "Are Bayesian Fan Charts Useful for Central Banks? Uncertainty, Forecasting, and Financial Stability Stress Tests," Working Papers 2011/10, Czech National Bank.
  8. Bjørnland, Hilde C. & Ravazzolo, Francesco & Thorsrud, Leif Anders, 2017. "Forecasting GDP with global components: This time is different," International Journal of Forecasting, Elsevier, vol. 33(1), pages 153-173.
  9. Gian Luigi Mazzi & James Mitchell & Gaetana Montana, 2014. "Density Nowcasts and Model Combination: Nowcasting Euro-Area GDP Growth over the 2008–09 Recession," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(2), pages 233-256, April.
  10. Knotek, Edward S. & Zaman, Saeed, 2023. "Real-time density nowcasts of US inflation: A model combination approach," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1736-1760.
  11. Anthoulla Phella, 2020. "Forecasting With Factor-Augmented Quantile Autoregressions: A Model Averaging Approach," Papers 2010.12263, arXiv.org.
  12. Michal Franta & David Havrlant & Marek Rusnák, 2016. "Forecasting Czech GDP Using Mixed-Frequency Data Models," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(2), pages 165-185, December.
  13. Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2018. "Combined Density Nowcasting in an Uncertain Economic Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 131-145, January.
  14. Ravazzolo Francesco & Vahey Shaun P., 2014. "Forecast densities for economic aggregates from disaggregate ensembles," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(4), pages 367-381, September.
  15. Francesco Ravazzolo & Marco J. Lombardi, 2012. "Oil price density forecasts: Exploring the linkages with stock markets," Working Papers No 3/2012, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
  16. Matei Demetrescu & Mu-Chun Wang, 2014. "Incorporating Asymmetric Preferences into Fan Charts and Path Forecasts," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(2), pages 287-297, April.
  17. Ruben Loaiza‐Maya & Gael M. Martin & David T. Frazier, 2021. "Focused Bayesian prediction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 517-543, August.
  18. Paulo M. Sánchez & Luis Fernando Melo, 2013. "Combinación de brechas del producto colombiano," Revista ESPE - Ensayos Sobre Política Económica, Banco de la República, vol. 31(72), pages 74-82, December.
  19. Wagner Piazza Gaglianone & Luiz Renato Lima, 2014. "Constructing Optimal Density Forecasts From Point Forecast Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 736-757, August.
  20. Anthony Garratt & James Mitchell & Shaun P. Vahey, 2009. "Measuring Output Gap Uncertainty," Birkbeck Working Papers in Economics and Finance 0909, Birkbeck, Department of Economics, Mathematics & Statistics.
  21. Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2011. "Combining Predictive Densities using Nonlinear Filtering with Applications to US Economics Data," Tinbergen Institute Discussion Papers 11-172/4, Tinbergen Institute.
  22. Lombardi, Marco J. & Ravazzolo, Francesco, 2016. "On the correlation between commodity and equity returns: Implications for portfolio allocation," Journal of Commodity Markets, Elsevier, vol. 2(1), pages 45-57.
  23. Kenichiro McAlinn & Knut Are Aastveit & Jouchi Nakajima & Mike West, 2020. "Multivariate Bayesian Predictive Synthesis in Macroeconomic Forecasting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1092-1110, July.
  24. Gelain, Paolo & Iskrev, Nikolay & J. Lansing, Kevin & Mendicino, Caterina, 2019. "Inflation dynamics and adaptive expectations in an estimated DSGE model," Journal of Macroeconomics, Elsevier, vol. 59(C), pages 258-277.
  25. Emilio Zanetti Chini, 2013. "Generalizing smooth transition autoregressions," CREATES Research Papers 2013-32, Department of Economics and Business Economics, Aarhus University.
  26. Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
  27. Kenneth Wallis, 2011. "Combining forecasts - forty years later," Applied Financial Economics, Taylor & Francis Journals, vol. 21(1-2), pages 33-41.
  28. Diebold, Francis X. & Shin, Minchul & Zhang, Boyuan, 2023. "On the aggregation of probability assessments: Regularized mixtures of predictive densities for Eurozone inflation and real interest rates," Journal of Econometrics, Elsevier, vol. 237(2).
  29. Bjørnland, Hilde C. & Gerdrup, Karsten & Jore, Anne Sofie & Smith, Christie & Thorsrud, Leif Anders, 2011. "Weights and pools for a Norwegian density combination," The North American Journal of Economics and Finance, Elsevier, vol. 22(1), pages 61-76, January.
  30. Fabian Krüger & Ingmar Nolte, 2011. "Disagreement, Uncertainty and the True Predictive Density," Working Paper Series of the Department of Economics, University of Konstanz 2011-43, Department of Economics, University of Konstanz.
  31. Lennart Hoogerheide & Richard Kleijn & Francesco Ravazzolo & Herman K. Van Dijk & Marno Verbeek, 2010. "Forecast accuracy and economic gains from Bayesian model averaging using time-varying weights," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 251-269.
  32. Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2010. "Combining predictive densities using Bayesian filtering with applications to US economics data," Working Paper 2010/29, Norges Bank.
  33. Wolden Bache, Ida & Sofie Jore, Anne & Mitchell, James & Vahey, Shaun P., 2011. "Combining VAR and DSGE forecast densities," Journal of Economic Dynamics and Control, Elsevier, vol. 35(10), pages 1659-1670, October.
  34. Victor Lopez-Perez, 2016. "Macroeconomic Forecast Uncertainty In The Euro Area," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 11(1), pages 9-41, March.
  35. Chanont Banternghansa & Michael W. McCracken, 2011. "Real-time forecast averaging with ALFRED," Review, Federal Reserve Bank of St. Louis, vol. 93(Jan), pages 49-66.
  36. Kenichiro McAlinn & Kosaku Takanashi, 2019. "Mean-shift least squares model averaging," Papers 1912.01194, arXiv.org.
  37. Knut Are Aastveit & Jamie L. Cross & Herman K. van Dijk, 2023. "Quantifying Time-Varying Forecast Uncertainty and Risk for the Real Price of Oil," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 523-537, April.
  38. Tommaso Proietti & Martyna Marczak & Gianluigi Mazzi, 2017. "Euromind‐ D : A Density Estimate of Monthly Gross Domestic Product for the Euro Area," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 683-703, April.
  39. repec:syb:wpbsba:01/2013 is not listed on IDEAS
  40. Zanetti Chini, Emilio, 2018. "Forecasting dynamically asymmetric fluctuations of the U.S. business cycle," International Journal of Forecasting, Elsevier, vol. 34(4), pages 711-732.
  41. Garratt, Anthony & Henckel, Timo & Vahey, Shaun P., 2023. "Empirically-transformed linear opinion pools," International Journal of Forecasting, Elsevier, vol. 39(2), pages 736-753.
  42. Knut Are Aastveit & James Mitchell & Francesco Ravazzolo & Herman van Dijk, 2018. "The Evolution of Forecast Density Combinations in Economics," Tinbergen Institute Discussion Papers 18-069/III, Tinbergen Institute.
  43. Boriss Siliverstovs, 2013. "Do business tendency surveys help in forecasting employment?: A real-time evidence for Switzerland," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 129-151.
  44. Henning Fischer & Marta García-Bárzana & Peter Tillmann & Peter Winker, 2014. "Evaluating FOMC forecast ranges: an interval data approach," Empirical Economics, Springer, vol. 47(1), pages 365-388, August.
  45. Todd E. Clark & Taeyoung Doh, 2011. "A Bayesian evaluation of alternative models of trend inflation," Research Working Paper RWP 11-16, Federal Reserve Bank of Kansas City.
  46. Wagner Piazza Gaglianone & Jaqueline Terra Moura Marins, 2014. "Risk Assessment of the Brazilian FX Rate," Working Papers Series 344, Central Bank of Brazil, Research Department.
  47. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
  48. Nalban, Valeriu, 2018. "Forecasting with DSGE models: What frictions are important?," Economic Modelling, Elsevier, vol. 68(C), pages 190-204.
  49. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
    • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
  50. Fabio Busetti, 2017. "Quantile Aggregation of Density Forecasts," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(4), pages 495-512, August.
  51. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014. "Nowcasting GDP in Real Time: A Density Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.
  52. Garratt, Anthony & Mitchell, James & Vahey, Shaun P., 2014. "Measuring output gap nowcast uncertainty," International Journal of Forecasting, Elsevier, vol. 30(2), pages 268-279.
  53. Nima Nonejad, 2021. "Bayesian model averaging and the conditional volatility process: an application to predicting aggregate equity returns by conditioning on economic variables," Quantitative Finance, Taylor & Francis Journals, vol. 21(8), pages 1387-1411, August.
  54. Paolo Vidoni, 2021. "Boosting multiplicative model combination," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 761-789, September.
  55. Gergely Akos Ganics, 2017. "Optimal density forecast combinations," Working Papers 1751, Banco de España.
  56. Jin, Xin & Maheu, John M. & Yang, Qiao, 2022. "Infinite Markov pooling of predictive distributions," Journal of Econometrics, Elsevier, vol. 228(2), pages 302-321.
  57. Timo Henckel & Shaun Vahey & Liz Wakerly, 2011. "Probabilistic interest rate setting with a shadow board: A description of the pilot project," CAMA Working Papers 2011-27, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  58. Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2017. "Density Forecasts With Midas Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 783-801, June.
  59. Gaglianone, Wagner Piazza & Marins, Jaqueline Terra Moura, 2017. "Evaluation of exchange rate point and density forecasts: An application to Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 707-728.
  60. Garratt, Anthony & Mitchell, James & Vahey, Shaun P. & Wakerly, Elizabeth C., 2011. "Real-time inflation forecast densities from ensemble Phillips curves," The North American Journal of Economics and Finance, Elsevier, vol. 22(1), pages 77-87, January.
  61. McKnight, Stephen & Mihailov, Alexander & Rumler, Fabio, 2020. "Inflation forecasting using the New Keynesian Phillips Curve with a time-varying trend," Economic Modelling, Elsevier, vol. 87(C), pages 383-393.
  62. McAlinn, Kenichiro & West, Mike, 2019. "Dynamic Bayesian predictive synthesis in time series forecasting," Journal of Econometrics, Elsevier, vol. 210(1), pages 155-169.
  63. Clark, Todd E. & Doh, Taeyoung, 2014. "Evaluating alternative models of trend inflation," International Journal of Forecasting, Elsevier, vol. 30(3), pages 426-448.
  64. Constantin Bürgi & Tara M. Sinclair, 2017. "A nonparametric approach to identifying a subset of forecasters that outperforms the simple average," Empirical Economics, Springer, vol. 53(1), pages 101-115, August.
  65. Francesco Ravazzolo & Shaun P Vahey, 2010. "Measuring Core Inflation in Australia with Disaggregate Ensembles," RBA Annual Conference Volume (Discontinued), in: Renée Fry & Callum Jones & Christopher Kent (ed.),Inflation in an Era of Relative Price Shocks, Reserve Bank of Australia.
  66. repec:ctc:serie1:def10 is not listed on IDEAS
  67. Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2017. "Density Forecasts With Midas Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 783-801, June.
  68. Carlos Henrique Dias Cordeiro de Castro & Fernando Antonio Lucena Aiube, 2023. "Forecasting inflation time series using score‐driven dynamic models and combination methods: The case of Brazil," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 369-401, March.
  69. Bo Zhang, 2019. "Real‐time inflation forecast combination for time‐varying coefficient models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(3), pages 175-191, April.
  70. Karsten R. Gerdrup & Anne Sofie Jore & Christie Smith & Leif Anders Thorsrud, 2009. "Evaluating ensemble density combination - forecasting GDP and inflation," Working Paper 2009/19, Norges Bank.
  71. Valeriu Nalban, 2015. "Do Bayesian Vector Autoregressive models improve density forecasting accuracy? The case of the Czech Republic and Romania," International Journal of Economic Sciences, International Institute of Social and Economic Sciences, vol. 4(1), pages 60-74, March.
  72. Jakub Ryšánek, 2010. "Combining VAR Forecast Densities Using Fast Fourier Transform," Acta Oeconomica Pragensia, Prague University of Economics and Business, vol. 2010(5), pages 72-88.
  73. K=osaku Takanashi & Kenichiro McAlinn, 2019. "Equivariant online predictions of non-stationary time series," Papers 1911.08662, arXiv.org, revised Jun 2023.
  74. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2019. "Density Forecasting," BEMPS - Bozen Economics & Management Paper Series BEMPS59, Faculty of Economics and Management at the Free University of Bozen.
  75. Paolo Vidoni, 2018. "A note on predictive densities based on composite likelihood methods," METRON, Springer;Sapienza Università di Roma, vol. 76(1), pages 31-48, April.
  76. Huurman, Christian & Ravazzolo, Francesco & Zhou, Chen, 2012. "The power of weather," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3793-3807.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.