IDEAS home Printed from https://ideas.repec.org/r/bla/inecol/v18y2014i6p859-870.html
   My bibliography  Save this item

Systematic Evaluation of Uncertainty in Material Flow Analysis

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zhou, Wei & Moncaster, Alice & O'Neill, Eoghan & Reiner, David M. & Wang, Xinke & Guthrie, Peter, 2022. "Modelling future trends of annual embodied energy of urban residential building stock in China," Energy Policy, Elsevier, vol. 165(C).
  2. Dominik Noll & Christian Lauk & Willi Haas & Simron Jit Singh & Panos Petridis & Dominik Wiedenhofer, 2022. "The sociometabolic transition of a small Greek island: Assessing stock dynamics, resource flows, and material circularity from 1929 to 2019," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 577-591, April.
  3. Richard C. Lupton & Julian M. Allwood, 2018. "Incremental Material Flow Analysis with Bayesian Inference," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1352-1364, December.
  4. Jean-Baptiste Bahers & Paula Higuera & Anne Ventura & Nicolas Antheaume, 2020. "The “Metal-Energy-Construction Mineral” Nexus in the Island Metabolism: The Case of the Extractive Economy of New Caledonia," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
  5. Andreas Mayer & Willi Haas & Dominik Wiedenhofer & Fridolin Krausmann & Philip Nuss & Gian Andrea Blengini, 2019. "Measuring Progress towards a Circular Economy: A Monitoring Framework for Economy‐wide Material Loop Closing in the EU28," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 62-76, February.
  6. Wiedenhofer, Dominik & Fishman, Tomer & Lauk, Christian & Haas, Willi & Krausmann, Fridolin, 2019. "Integrating Material Stock Dynamics Into Economy-Wide Material Flow Accounting: Concepts, Modelling, and Global Application for 1900–2050," Ecological Economics, Elsevier, vol. 156(C), pages 121-133.
  7. Courtonne, Jean-Yves & Alapetite, Julien & Longaretti, Pierre-Yves & Dupré, Denis & Prados, Emmanuel, 2015. "Downscaling material flow analysis: The case of the cereal supply chain in France," Ecological Economics, Elsevier, vol. 118(C), pages 67-80.
  8. Jean‐Yves Courtonne & Pierre‐Yves Longaretti & Denis Dupré, 2018. "Uncertainties of Domestic Road Freight Statistics: Insights for Regional Material Flow Studies," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1189-1201, October.
  9. Zhu, Xiangyan & Geng, Yong & Gao, Ziyan & Tian, Xu & Xiao, Shijiang & Houssini, Khaoula, 2023. "Investigating zirconium flows and stocks in China: A dynamic material flow analysis," Resources Policy, Elsevier, vol. 80(C).
  10. Dominik Noll & Christian Lauk & Veronika Gaube & Dominik Wiedenhofer, 2020. "Caught in a Deadlock: Small Ruminant Farming on the Greek Island of Samothrace. The Importance of Regional Contexts for Effective EU Agricultural Policies," Sustainability, MDPI, vol. 12(3), pages 1-19, January.
  11. Li, Yizhou & Wang, Yibo & Ge, Jianping, 2023. "Tracing the material flows of dysprosium in China from 2010 to 2020: An investigation of the partition characteristics of different rare earth mining areas," Resources Policy, Elsevier, vol. 85(PB).
  12. Tomer Fishman & Rupert J. Myers & Orlando Rios & T.E. Graedel, 2018. "Implications of Emerging Vehicle Technologies on Rare Earth Supply and Demand in the United States," Resources, MDPI, vol. 7(1), pages 1-15, January.
  13. Oliver Heidrich & Alistair C. Ford & Richard J. Dawson & David A. C. Manning & Eugene Mohareb & Marco Raugei & Joris Baars & Mohammad Ali Rajaeifar, 2022. "LAYERS: A Decision-Support Tool to Illustrate and Assess the Supply and Value Chain for the Energy Transition," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
  14. Jedelhauser, Michael & Binder, Claudia R., 2015. "Losses and efficiencies of phosphorus on a national level – A comparison of European substance flow analyses," Resources, Conservation & Recycling, Elsevier, vol. 105(PB), pages 294-310.
  15. Van Eygen, Emile & Feketitsch, Julia & Laner, David & Rechberger, Helmut & Fellner, Johann, 2017. "Comprehensive analysis and quantification of national plastic flows: The case of Austria," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 183-194.
  16. Paoli, Leonardo & Lupton, Richard C. & Cullen, Jonathan M., 2018. "Useful energy balance for the UK: An uncertainty analysis," Applied Energy, Elsevier, vol. 228(C), pages 176-188.
  17. Zhao, Guimei & Li, Wenxiu & Geng, Yong & Bleischwitz, Raimund, 2023. "Dynamic material flow analysis of antimony resources in China," Resources Policy, Elsevier, vol. 86(PB).
  18. Liu, Sijie & Geng, Yong & Gao, Ziyan & Li, Jinze & Xiao, Shijiang, 2023. "Uncovering the key features of gold flows and stocks in China," Resources Policy, Elsevier, vol. 82(C).
  19. Escobar, Neus & Laibach, Natalie, 2021. "Sustainability check for bio-based technologies: A review of process-based and life cycle approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  20. Yiqi Zhang & Yuan Chang & Changbo Wang & Jimmy C. H. Fung & Alexis K. H. Lau, 2022. "Life‐cycle energy and environmental emissions of cargo ships," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 2057-2068, December.
  21. Ziyan Gao & Yong Geng & Xianlai Zeng & Xu Tian & Tianli Yao & Xiaoqian Song & Chang Su, 2022. "Evolution of the anthropogenic chromium cycle in China," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 592-608, April.
  22. Jean-Yves Courtonne & Julien Alapetite & Pierre-Yves Longaretti & Denis Dupré & Emmanuel Prados, 2015. "Downscaling material flow analysis: the case of the cereals supply chain in France," Working Papers hal-01142357, HAL.
  23. Didzis Rutitis & Anete Smoca & Inga Uvarova & Janis Brizga & Dzintra Atstaja & Inese Mavlutova, 2022. "Sustainable Value Chain of Industrial Biocomposite Consumption: Influence of COVID-19 and Consumer Behavior," Energies, MDPI, vol. 15(2), pages 1-27, January.
  24. Ariane Krause & Vera Susanne Rotter, 2018. "Recycling Improves Soil Fertility Management in Smallholdings in Tanzania," Agriculture, MDPI, vol. 8(3), pages 1-31, February.
  25. Chancerel, Perrine & Marwede, Max & Nissen, Nils F. & Lang, Klaus-Dieter, 2015. "Estimating the quantities of critical metals embedded in ICT and consumer equipment," Resources, Conservation & Recycling, Elsevier, vol. 98(C), pages 9-18.
  26. Klinglmair, Manfred & Zoboli, Ottavia & Laner, David & Rechberger, Helmut & Astrup, Thomas Fruergaard & Scheutz, Charlotte, 2016. "The effect of data structure and model choices on MFA results: A comparison of phosphorus balances for Denmark and Austria," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 166-175.
  27. Jean-Baptiste Bahers & Paula Higuera & Anne Ventura & Nicolas Antheaume, 2020. "The “Metal-Energy-Construction Mineral” Nexus in the Island Metabolism: The Case of the Extractive Economy of New Caledonia," Post-Print hal-02507504, HAL.
  28. Jin, Pengfei & Wang, Saige & Meng, Zheng & Chen, Bin, 2023. "China's lithium supply chains: Network evolution and resilience assessment," Resources Policy, Elsevier, vol. 87(PB).
  29. Daniel Grossegger, 2022. "Material flow analysis study of asphalt in an Austrian municipality," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 996-1009, June.
  30. Schiller, Georg & Müller, Felix & Ortlepp, Regine, 2017. "Mapping the anthropogenic stock in Germany: Metabolic evidence for a circular economy," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 93-107.
  31. Buchner, Hanno & Laner, David & Rechberger, Helmut & Fellner, Johann, 2014. "In-depth analysis of aluminum flows in Austria as a basis to increase resource efficiency," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 112-123.
  32. Georg Schiller & Tamara Bimesmeier & Anh T.V. Pham, 2020. "Method for Quantifying Supply and Demand of Construction Minerals in Urban Regions—A Case Study of Hanoi and Its Hinterland," Sustainability, MDPI, vol. 12(11), pages 1-23, May.
  33. Meng Jiang & Yuheng Cao & Changgong Liu & Dingjiang Chen & Wenji Zhou & Qian Wen & Hejiang Yu & Jian Jiang & Yucheng Ren & Shanying Hu & Edgar Hertwich & Bing Zhu, 2024. "Tracing fossil-based plastics, chemicals and fertilizers production in China," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  34. Ueberschaar, Maximilian & Geiping, Julia & Zamzow, Malte & Flamme, Sabine & Rotter, Vera Susanne, 2017. "Assessment of element-specific recycling efficiency in WEEE pre-processing," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 25-41.
  35. Meylan, Grégoire & Reck, Barbara K., 2017. "The anthropogenic cycle of zinc: Status quo and perspectives," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 1-10.
  36. Ciacci, L. & Passarini, F. & Vassura, I., 2017. "The European PVC cycle: In-use stock and flows," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 108-116.
  37. Xaysackda Vilaysouk & Savath Saypadith & Seiji Hashimoto, 2022. "Semisupervised machine learning classification framework for material intensity parameters of residential buildings," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 72-87, February.
  38. Coenraad D. Westbroek & Jennifer Bitting & Matteo Craglia & José M. C. Azevedo & Jonathan M. Cullen, 2021. "Global material flow analysis of glass: From raw materials to end of life," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 333-343, April.
  39. Nguyet Thi Tran & Dirk Weichgrebe, 2020. "Regional material flow behaviors of agro‐food processing craft villages in Red River Delta, Vietnam," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 707-725, June.
  40. Minghao Xu & Dingjiang Chen & Yadong Yu & Zengbo Chen & Yupeng Zhang & Bomin Liu & Yike Fu & Bing Zhu, 2021. "Assessing resource consumption at the subnational level: A novel accounting method based on provincial selected material consumption," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 580-592, June.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.