IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i2p466-d721329.html
   My bibliography  Save this article

Sustainable Value Chain of Industrial Biocomposite Consumption: Influence of COVID-19 and Consumer Behavior

Author

Listed:
  • Didzis Rutitis

    (Circular Economy Center, Liepaja University, Lielā st. 14, LV-3401 Liepaja, Latvia
    Management Department, BA School of Business and Finance, K.Valdemara st. 161, LV-1013 Riga, Latvia)

  • Anete Smoca

    (Institute of Design Technologies, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Kipsalas st. 6, LV-1048 Riga, Latvia)

  • Inga Uvarova

    (Management Department, BA School of Business and Finance, K.Valdemara st. 161, LV-1013 Riga, Latvia
    ArtSmart, Vidrižu st. 1c-29, LV-1006 Riga, Latvia)

  • Janis Brizga

    (Circular Economy Center, Liepaja University, Lielā st. 14, LV-3401 Liepaja, Latvia
    Department of Geography and Earth Sciences, University of Latvia, Jelgavas st. 1, LV-1004 Riga, Latvia)

  • Dzintra Atstaja

    (Management Department, BA School of Business and Finance, K.Valdemara st. 161, LV-1013 Riga, Latvia
    Legal Department, Faculty of Law, Riga Stradins University, Dzirciema st. 16, LV-1007 Riga, Latvia)

  • Inese Mavlutova

    (Department of Economics and Finance, BA School of Business and Finance, K.Valdemara st. 161, LV-1013 Riga, Latvia)

Abstract

The COVID-19 pandemic has been one of the most unprecedented crises of recent decades with a global effect on society and the economy. It has triggered changes in the behavior and consumption patterns of both final consumer and industrial consumers. The consumption patterns of industrial consumers are also influenced by changes in consumer values, environmental regulations, and technological developments. One of the technological highlights of the last decade is biocomposite materials being increasingly used by the packaging industry. The pandemic has highlighted the problems and challenges of the development of biocomposites to adapt to new market conditions. This study aims to investigate the industrial consumption of biocomposite materials and the influence of the COVID-19 pandemic on the main stages of the value chain of sustainable industrial consumption of biocomposites. The research results reveal there is a growing interest in the use of biocomposites. Suppliers and processors of raw materials are being encouraged to optimize and adapt cleaner production processes in the sustainable transition pathway. The study highlights the positive impact of COVID-19 on the feedstock production, raw material processing, and packaging manufacturing stages of the value chain as well as the neutral impact on the product manufacturing stage and negative impact on the retail stage. The companies willing to move toward the sustainable industrial chain have to incorporate economic, environmental, social, stakeholder, volunteer, resilience, and long-term directions within their strategies.

Suggested Citation

  • Didzis Rutitis & Anete Smoca & Inga Uvarova & Janis Brizga & Dzintra Atstaja & Inese Mavlutova, 2022. "Sustainable Value Chain of Industrial Biocomposite Consumption: Influence of COVID-19 and Consumer Behavior," Energies, MDPI, vol. 15(2), pages 1-27, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:466-:d:721329
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/2/466/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/2/466/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Laner & Helmut Rechberger & Thomas Astrup, 2014. "Systematic Evaluation of Uncertainty in Material Flow Analysis," Journal of Industrial Ecology, Yale University, vol. 18(6), pages 859-870, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Baptiste Bahers & Paula Higuera & Anne Ventura & Nicolas Antheaume, 2020. "The “Metal-Energy-Construction Mineral” Nexus in the Island Metabolism: The Case of the Extractive Economy of New Caledonia," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    2. Nguyet Thi Tran & Dirk Weichgrebe, 2020. "Regional material flow behaviors of agro‐food processing craft villages in Red River Delta, Vietnam," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 707-725, June.
    3. Tomer Fishman & Rupert J. Myers & Orlando Rios & T.E. Graedel, 2018. "Implications of Emerging Vehicle Technologies on Rare Earth Supply and Demand in the United States," Resources, MDPI, vol. 7(1), pages 1-15, January.
    4. Yiqi Zhang & Yuan Chang & Changbo Wang & Jimmy C. H. Fung & Alexis K. H. Lau, 2022. "Life‐cycle energy and environmental emissions of cargo ships," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 2057-2068, December.
    5. Xaysackda Vilaysouk & Savath Saypadith & Seiji Hashimoto, 2022. "Semisupervised machine learning classification framework for material intensity parameters of residential buildings," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 72-87, February.
    6. Paoli, Leonardo & Lupton, Richard C. & Cullen, Jonathan M., 2018. "Useful energy balance for the UK: An uncertainty analysis," Applied Energy, Elsevier, vol. 228(C), pages 176-188.
    7. Dominik Noll & Christian Lauk & Willi Haas & Simron Jit Singh & Panos Petridis & Dominik Wiedenhofer, 2022. "The sociometabolic transition of a small Greek island: Assessing stock dynamics, resource flows, and material circularity from 1929 to 2019," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 577-591, April.
    8. Van Eygen, Emile & Feketitsch, Julia & Laner, David & Rechberger, Helmut & Fellner, Johann, 2017. "Comprehensive analysis and quantification of national plastic flows: The case of Austria," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 183-194.
    9. Dominik Noll & Christian Lauk & Veronika Gaube & Dominik Wiedenhofer, 2020. "Caught in a Deadlock: Small Ruminant Farming on the Greek Island of Samothrace. The Importance of Regional Contexts for Effective EU Agricultural Policies," Sustainability, MDPI, vol. 12(3), pages 1-19, January.
    10. Ueberschaar, Maximilian & Geiping, Julia & Zamzow, Malte & Flamme, Sabine & Rotter, Vera Susanne, 2017. "Assessment of element-specific recycling efficiency in WEEE pre-processing," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 25-41.
    11. Georg Schiller & Tamara Bimesmeier & Anh T.V. Pham, 2020. "Method for Quantifying Supply and Demand of Construction Minerals in Urban Regions—A Case Study of Hanoi and Its Hinterland," Sustainability, MDPI, vol. 12(11), pages 1-23, May.
    12. Jin, Pengfei & Wang, Saige & Meng, Zheng & Chen, Bin, 2023. "China's lithium supply chains: Network evolution and resilience assessment," Resources Policy, Elsevier, vol. 87(PB).
    13. Zhou, Wei & Moncaster, Alice & O'Neill, Eoghan & Reiner, David M. & Wang, Xinke & Guthrie, Peter, 2022. "Modelling future trends of annual embodied energy of urban residential building stock in China," Energy Policy, Elsevier, vol. 165(C).
    14. Oliver Heidrich & Alistair C. Ford & Richard J. Dawson & David A. C. Manning & Eugene Mohareb & Marco Raugei & Joris Baars & Mohammad Ali Rajaeifar, 2022. "LAYERS: A Decision-Support Tool to Illustrate and Assess the Supply and Value Chain for the Energy Transition," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    15. Zhao, Guimei & Li, Wenxiu & Geng, Yong & Bleischwitz, Raimund, 2023. "Dynamic material flow analysis of antimony resources in China," Resources Policy, Elsevier, vol. 86(PB).
    16. Ariane Krause & Vera Susanne Rotter, 2018. "Recycling Improves Soil Fertility Management in Smallholdings in Tanzania," Agriculture, MDPI, vol. 8(3), pages 1-31, February.
    17. Wiedenhofer, Dominik & Fishman, Tomer & Lauk, Christian & Haas, Willi & Krausmann, Fridolin, 2019. "Integrating Material Stock Dynamics Into Economy-Wide Material Flow Accounting: Concepts, Modelling, and Global Application for 1900–2050," Ecological Economics, Elsevier, vol. 156(C), pages 121-133.
    18. Escobar, Neus & Laibach, Natalie, 2021. "Sustainability check for bio-based technologies: A review of process-based and life cycle approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. Chancerel, Perrine & Marwede, Max & Nissen, Nils F. & Lang, Klaus-Dieter, 2015. "Estimating the quantities of critical metals embedded in ICT and consumer equipment," Resources, Conservation & Recycling, Elsevier, vol. 98(C), pages 9-18.
    20. Jean‐Yves Courtonne & Pierre‐Yves Longaretti & Denis Dupré, 2018. "Uncertainties of Domestic Road Freight Statistics: Insights for Regional Material Flow Studies," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1189-1201, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:466-:d:721329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.