IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v25y2021i2p333-343.html
   My bibliography  Save this article

Global material flow analysis of glass: From raw materials to end of life

Author

Listed:
  • Coenraad D. Westbroek
  • Jennifer Bitting
  • Matteo Craglia
  • José M. C. Azevedo
  • Jonathan M. Cullen

Abstract

Global glass production grew to 150 million tonnes (Mt) in 2014, equating to approximately 21 kg per person. Producing this glass is energy intensive and contributes annual CO2 emissions of some 86Mt. An accurate map of the global glass supply chain is needed to help identify emissions mitigation options from across the supply chain, including process energy efficiency and material efficiency options. This map does not yet exist, so we address this knowledge gap by tracing the production chain from raw materials to end of life and producing a global Sankey diagram of container and flat glass making for 2014. To understand future demand for flat glass we also model the stocks of glass in vehicles and buildings. The analysis shows the relative scale of glass flows and stocks worldwide and provides a baseline for future study of the emission mitigation potential of energy and material efficiency of manufacturing with glass.

Suggested Citation

  • Coenraad D. Westbroek & Jennifer Bitting & Matteo Craglia & José M. C. Azevedo & Jonathan M. Cullen, 2021. "Global material flow analysis of glass: From raw materials to end of life," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 333-343, April.
  • Handle: RePEc:bla:inecol:v:25:y:2021:i:2:p:333-343
    DOI: 10.1111/jiec.13112
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13112
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lupton, R.C. & Allwood, J.M., 2017. "Hybrid Sankey diagrams: Visual analysis of multidimensional data for understanding resource use," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 141-151.
    2. Stijn Van Ewijk & Julia A. Stegemann & Paul Ekins, 2018. "Global Life Cycle Paper Flows, Recycling Metrics, and Material Efficiency," Journal of Industrial Ecology, Yale University, vol. 22(4), pages 686-693, August.
    3. Jonathan M. Cullen, 2017. "Circular Economy: Theoretical Benchmark or Perpetual Motion Machine?," Journal of Industrial Ecology, Yale University, vol. 21(3), pages 483-486, June.
    4. David Laner & Helmut Rechberger & Thomas Astrup, 2014. "Systematic Evaluation of Uncertainty in Material Flow Analysis," Journal of Industrial Ecology, Yale University, vol. 18(6), pages 859-870, December.
    5. Cooper, Daniel R. & Skelton, Alexandra C.H. & Moynihan, Muiris C. & Allwood, Julian M., 2014. "Component level strategies for exploiting the lifespan of steel in products," Resources, Conservation & Recycling, Elsevier, vol. 84(C), pages 24-34.
    6. Schmitz, Andreas & Kaminski, Jacek & Maria Scalet, Bianca & Soria, Antonio, 2011. "Energy consumption and CO2 emissions of the European glass industry," Energy Policy, Elsevier, vol. 39(1), pages 142-155, January.
    7. Ching‐Ling Tsai & Uta Krogmann, 2013. "Material Flows and Energy Analysis of Glass Containers Discarded in New Jersey, USA," Journal of Industrial Ecology, Yale University, vol. 17(1), pages 129-142, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eric Masanet & Niko Heeren & Shigemi Kagawa & Jonathan Cullen & Reid Lifset & Richard Wood, 2021. "Material efficiency for climate change mitigation," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 254-259, April.
    2. Rigby, Aidan & Lindley, Ben & Cullen, Jonathan, 2023. "An exergy based assessment of the efficiency of nuclear fuel cycles," Energy, Elsevier, vol. 264(C).
    3. Gutai, Matyas & Mok, Brandon & Cavana, Giulio & Kheybari, Abolfazl Ganji, 2024. "Global carbon viability of glass technologies: Life-cycle assessment of standard, advanced and water-filled glass (WFG) building envelopes," Applied Energy, Elsevier, vol. 367(C).
    4. Lima, Ana T. & Kirkelund, Gunvor M. & Lu, Zheng & Mao, Ruichang & Kunther, Wolfgang & Rode, Carsten & Slabik, Simon & Hafner, Annette & Sameer, Husam & Dürr, Hans H. & Flörke, Martina & Lowe, Benjamin, 2024. "Mapping circular economy practices for steel, cement, glass, brick, insulation, and wood – A review for climate mitigation modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    5. Daniel Grossegger, 2022. "Material flow analysis study of asphalt in an Austrian municipality," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 996-1009, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Mayer & Willi Haas & Dominik Wiedenhofer & Fridolin Krausmann & Philip Nuss & Gian Andrea Blengini, 2019. "Measuring Progress towards a Circular Economy: A Monitoring Framework for Economy‐wide Material Loop Closing in the EU28," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 62-76, February.
    2. Jamshidi, Ali & Kurumisawa, Kiyofumi & Nawa, Toyoharu & Igarashi, Toshifumi, 2016. "Performance of pavements incorporating waste glass: The current state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 211-236.
    3. Jean-Baptiste Bahers & Paula Higuera & Anne Ventura & Nicolas Antheaume, 2020. "The “Metal-Energy-Construction Mineral” Nexus in the Island Metabolism: The Case of the Extractive Economy of New Caledonia," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    4. Mario Testa & Ornella Malandrino & Maria Rosaria Sessa & Stefania Supino & Daniela Sica, 2017. "Long-Term Sustainability from the Perspective of Cullet Recycling in the Container Glass Industry: Evidence from Italy," Sustainability, MDPI, vol. 9(10), pages 1-19, October.
    5. Jan Streeck & Quirin Dammerer & Dominik Wiedenhofer & Fridolin Krausmann, 2021. "The role of socio‐economic material stocks for natural resource use in the United States of America from 1870 to 2100," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1486-1502, December.
    6. Michael Saidani & Alissa Kendall & Bernard Yannou & Yann Leroy & François Cluzel, 2019. "Closing the loop on platinum from catalytic converters: Contributions from material flow analysis and circularity indicators," Post-Print hal-02094798, HAL.
    7. Nguyet Thi Tran & Dirk Weichgrebe, 2020. "Regional material flow behaviors of agro‐food processing craft villages in Red River Delta, Vietnam," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 707-725, June.
    8. Charalampos Michalakakis & Jeremy Fouillou & Richard C. Lupton & Ana Gonzalez Hernandez & Jonathan M. Cullen, 2021. "Calculating the chemical exergy of materials," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 274-287, April.
    9. Hans Eickhoff, 2024. "The appeal of the circular economy revisited: on track for transformative change or enabler of moral licensing?," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-8, December.
    10. Tobias Wendler, 2019. "About the Relationship Between Green Technology and Material Usage," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(3), pages 1383-1423, November.
    11. Tomer Fishman & Rupert J. Myers & Orlando Rios & T.E. Graedel, 2018. "Implications of Emerging Vehicle Technologies on Rare Earth Supply and Demand in the United States," Resources, MDPI, vol. 7(1), pages 1-15, January.
    12. Jennifer Petoskey & Missy Stults & Eileen Naples & Galen Hardy & Alicia Quilici & Cassie Byerly & Amelia Clark & Deja Newton & Elizabeth Santiago & Jack Teener, 2021. "Envisioning a Circular Economy: The Journey of One Mid-Sized Midwestern City," Sustainability, MDPI, vol. 13(6), pages 1-18, March.
    13. Andreea Loredana Bîrgovan & Elena Simina Lakatos & Andrea Szilagyi & Lucian Ionel Cioca & Roxana Lavinia Pacurariu & George Ciobanu & Elena Cristina Rada, 2022. "How Should We Measure? A Review of Circular Cities Indicators," IJERPH, MDPI, vol. 19(9), pages 1-16, April.
    14. Yiqi Zhang & Yuan Chang & Changbo Wang & Jimmy C. H. Fung & Alexis K. H. Lau, 2022. "Life‐cycle energy and environmental emissions of cargo ships," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 2057-2068, December.
    15. Lucas Becerra & Sebastián Carenzo & Paula Juarez, 2020. "When Circular Economy Meets Inclusive Development. Insights from Urban Recycling and Rural Water Access in Argentina," Sustainability, MDPI, vol. 12(23), pages 1-21, November.
    16. Xaysackda Vilaysouk & Savath Saypadith & Seiji Hashimoto, 2022. "Semisupervised machine learning classification framework for material intensity parameters of residential buildings," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 72-87, February.
    17. Bordigoni, Mathieu & Hita, Alain & Le Blanc, Gilles, 2012. "Role of embodied energy in the European manufacturing industry: Application to short-term impacts of a carbon tax," Energy Policy, Elsevier, vol. 43(C), pages 335-350.
    18. Paoli, Leonardo & Lupton, Richard C. & Cullen, Jonathan M., 2018. "Useful energy balance for the UK: An uncertainty analysis," Applied Energy, Elsevier, vol. 228(C), pages 176-188.
    19. Dominik Noll & Christian Lauk & Willi Haas & Simron Jit Singh & Panos Petridis & Dominik Wiedenhofer, 2022. "The sociometabolic transition of a small Greek island: Assessing stock dynamics, resource flows, and material circularity from 1929 to 2019," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 577-591, April.
    20. Jim Hart & Francesco Pomponi, 2021. "A Circular Economy: Where Will It Take Us?," Circular Economy and Sustainability, Springer, vol. 1(1), pages 127-141, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:25:y:2021:i:2:p:333-343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.