IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v123y2017icp1-10.html
   My bibliography  Save this article

The anthropogenic cycle of zinc: Status quo and perspectives

Author

Listed:
  • Meylan, Grégoire
  • Reck, Barbara K.

Abstract

Zinc is a key metal of industrial society that saw an unprecedented growth of its use between 2000 and 2010, largely driven by demand in China. Nonetheless, a contemporary understanding of multi-level stocks and flows of zinc is lacking. This paper presents the cycles of relevant countries, eight world regions, and the globe for 2010, relying on material flow analysis (MFA) for results that have the potential to inform policy makers and future research. We estimate the global zinc end-of-life recycling rate at 33%, which helps achieve a 27% of fabricated zinc coming from secondary sources. Most losses occur in waste management, most of it in the end use sectors construction and transportation. Increasing collection rates in these two sectors should be a priority for closing the zinc cycle. China dominates the global anthropogenic zinc cycle, and relies on primary zinc from Latin America and the Caribbean and Oceania to support its zinc demand. Government and industry in Europe and North America should anticipate shifts in exports of their zinc-containing scrap due to the growing availability of Chinese end-of-life zinc. Further research combining this study with scenario analysis could provide the knowledge base to answer questions related to this issue.

Suggested Citation

  • Meylan, Grégoire & Reck, Barbara K., 2017. "The anthropogenic cycle of zinc: Status quo and perspectives," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 1-10.
  • Handle: RePEc:eee:recore:v:123:y:2017:i:c:p:1-10
    DOI: 10.1016/j.resconrec.2016.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344916300064
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2016.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Magnus Fröhling & Frank Schwaderer & Hauke Bartusch & Frank Schultmann, 2013. "A Material Flow‐based Approach to Enhance Resource Efficiency in Production and Recycling Networks," Journal of Industrial Ecology, Yale University, vol. 17(1), pages 5-19, February.
    2. Ma, Hwong-wen & Matsubae, Kazuyo & Nakajima, Kenichi & Tsai, Min-Shing & Shao, Kung-Hsien & Chen, Pi-Cheng & Lee, Chia-Ho & Nagasaka, Tetsuya, 2011. "Substance flow analysis of zinc cycle and current status of electric arc furnace dust management for zinc recovery in Taiwan," Resources, Conservation & Recycling, Elsevier, vol. 56(1), pages 134-140.
    3. T. E. Graedel & Dick van Beers & Marlen Bertram & Kensuke Fuse & Robert B. Gordon & Alexander Gritsinin & Ermelinda M. Harper & Amit Kapur & Robert J. Klee & Reid Lifset & Laiq Memon & Sabrina Spatari, 2005. "The Multilevel Cycle of Anthropogenic Zinc," Journal of Industrial Ecology, Yale University, vol. 9(3), pages 67-90, July.
    4. Christina Licht & Laura Talens Peiró & Gara Villalba, 2015. "Global Substance Flow Analysis of Gallium, Germanium, and Indium: Quantification of Extraction, Uses, and Dissipative Losses within their Anthropogenic Cycles," Journal of Industrial Ecology, Yale University, vol. 19(5), pages 890-903, October.
    5. David Laner & Helmut Rechberger & Thomas Astrup, 2014. "Systematic Evaluation of Uncertainty in Material Flow Analysis," Journal of Industrial Ecology, Yale University, vol. 18(6), pages 859-870, December.
    6. Daigo, Ichiro & Osako, Shun & Adachi, Yoshihiro & Matsuno, Yasunari, 2014. "Time-series analysis of global zinc demand associated with steel," Resources, Conservation & Recycling, Elsevier, vol. 82(C), pages 35-40.
    7. Zheng Wan, 2015. "China’s scientific progress hinges on access to data," Nature, Nature, vol. 520(7549), pages 587-587, April.
    8. Barbara K. Reck & Vera Susanne Rotter, 2012. "Comparing Growth Rates of Nickel and Stainless Steel Use in the Early 2000s," Journal of Industrial Ecology, Yale University, vol. 16(4), pages 518-528, August.
    9. Paul H. Brunner, 2011. "Urban Mining A Contribution to Reindustrializing the City," Journal of Industrial Ecology, Yale University, vol. 15(3), pages 339-341, June.
    10. Helmut Rechberger & Oliver Cencic & Rudolf Frühwirth, 2014. "Uncertainty in Material Flow Analysis," Journal of Industrial Ecology, Yale University, vol. 18(2), pages 159-160, April.
    11. T. E. Graedel & Julian Allwood & Jean‐Pierre Birat & Matthias Buchert & Christian Hagelüken & Barbara K. Reck & Scott F. Sibley & Guido Sonnemann, 2011. "What Do We Know About Metal Recycling Rates?," Journal of Industrial Ecology, Yale University, vol. 15(3), pages 355-366, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuhua Guo & Junmao Qie & Chunxia Zhang & Yuantao Yang, 2021. "Material flow analysis of zinc during the manufacturing process in integrated steel mills in China," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 1009-1020, August.
    2. Rupert J. Myers & Tomer Fishman & Barbara K. Reck & T. E. Graedel, 2019. "Unified Materials Information System (UMIS): An Integrated Material Stocks and Flows Data Structure," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 222-240, February.
    3. Christoph Helbig & Yasushi Kondo & Shinichiro Nakamura, 2022. "Simultaneously tracing the fate of seven metals at a global level with MaTrace‐multi," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 923-936, June.
    4. Chen, Wei & Dai, Yiyang & Liu, Zhigao & Zhang, Haipeng, 2024. "The evolution of global zinc trade network: Patterns and implications," Resources Policy, Elsevier, vol. 90(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph Helbig & Yasushi Kondo & Shinichiro Nakamura, 2022. "Simultaneously tracing the fate of seven metals at a global level with MaTrace‐multi," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 923-936, June.
    2. Nguyet Thi Tran & Dirk Weichgrebe, 2020. "Regional material flow behaviors of agro‐food processing craft villages in Red River Delta, Vietnam," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 707-725, June.
    3. Tomer Fishman & Rupert J. Myers & Orlando Rios & T.E. Graedel, 2018. "Implications of Emerging Vehicle Technologies on Rare Earth Supply and Demand in the United States," Resources, MDPI, vol. 7(1), pages 1-15, January.
    4. Daigo, Ichiro & Osako, Shun & Adachi, Yoshihiro & Matsuno, Yasunari, 2014. "Time-series analysis of global zinc demand associated with steel," Resources, Conservation & Recycling, Elsevier, vol. 82(C), pages 35-40.
    5. Xaysackda Vilaysouk & Savath Saypadith & Seiji Hashimoto, 2022. "Semisupervised machine learning classification framework for material intensity parameters of residential buildings," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 72-87, February.
    6. Esther Thiébaud & Lorenz M. Hilty & Mathias Schluep & Heinz W. Böni & Martin Faulstich, 2018. "Where Do Our Resources Go? Indium, Neodymium, and Gold Flows Connected to the Use of Electronic Equipment in Switzerland," Sustainability, MDPI, vol. 10(8), pages 1-17, July.
    7. Tercero Espinoza, Luis Alberto & Soulier, Marcel, 2017. "Defining regional recycling indicators for metals: An extension of global recycling indicators to regional systems with open boundaries," Working Papers "Sustainability and Innovation" S04/2017, Fraunhofer Institute for Systems and Innovation Research (ISI).
    8. Luca Ciacci & Cristina T. de Matos & Barbara K. Reck & Dominic Wittmer & Elena Bernardi & Fabrice Mathieux & Fabrizio Passarini, 2022. "Material system analysis: Characterization of flows, stocks, and performance indicators of manganese, nickel, and natural graphite in the EU, 2012–2016," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1247-1260, August.
    9. Helbig, Christoph & Bradshaw, Alex M. & Kolotzek, Christoph & Thorenz, Andrea & Tuma, Axel, 2016. "Supply risks associated with CdTe and CIGS thin-film photovoltaics," Applied Energy, Elsevier, vol. 178(C), pages 422-433.
    10. Tercero Espinoza, Luis A., 2021. "Critical appraisal of recycling indicators used in European criticality exercises and circularity monitoring," Resources Policy, Elsevier, vol. 73(C).
    11. Jean‐Yves Courtonne & Pierre‐Yves Longaretti & Denis Dupré, 2018. "Uncertainties of Domestic Road Freight Statistics: Insights for Regional Material Flow Studies," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1189-1201, October.
    12. Jedelhauser, Michael & Binder, Claudia R., 2015. "Losses and efficiencies of phosphorus on a national level – A comparison of European substance flow analyses," Resources, Conservation & Recycling, Elsevier, vol. 105(PB), pages 294-310.
    13. Yuhua Guo & Junmao Qie & Chunxia Zhang & Yuantao Yang, 2021. "Material flow analysis of zinc during the manufacturing process in integrated steel mills in China," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 1009-1020, August.
    14. Schiller, Georg & Müller, Felix & Ortlepp, Regine, 2017. "Mapping the anthropogenic stock in Germany: Metabolic evidence for a circular economy," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 93-107.
    15. Pauliuk, Stefan & Kondo, Yasushi & Nakamura, Shinichiro & Nakajima, Kenichi, 2017. "Regional distribution and losses of end-of-life steel throughout multiple product life cycles—Insights from the global multiregional MaTrace model," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 84-93.
    16. Courtonne, Jean-Yves & Alapetite, Julien & Longaretti, Pierre-Yves & Dupré, Denis & Prados, Emmanuel, 2015. "Downscaling material flow analysis: The case of the cereal supply chain in France," Ecological Economics, Elsevier, vol. 118(C), pages 67-80.
    17. Jean-Yves Courtonne & Julien Alapetite & Pierre-Yves Longaretti & Denis Dupré & Emmanuel Prados, 2015. "Downscaling material flow analysis: the case of the cereals supply chain in France," Working Papers hal-01142357, HAL.
    18. Yulia Lapko & Andrea Trianni & Cali Nuur & Donato Masi, 2019. "In Pursuit of Closed‐Loop Supply Chains for Critical Materials: An Exploratory Study in the Green Energy Sector," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 182-196, February.
    19. Ziyan Gao & Yong Geng & Xianlai Zeng & Xu Tian & Tianli Yao & Xiaoqian Song & Chang Su, 2022. "Evolution of the anthropogenic chromium cycle in China," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 592-608, April.
    20. Adriano Cordisco & Riccardo Melloni & Lucia Botti, 2022. "Sustainable Circular Economy for the Integration of Disadvantaged People: A Preliminary Study on the Reuse of Lithium-Ion Batteries," Sustainability, MDPI, vol. 14(13), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:123:y:2017:i:c:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.