IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v26y2022i6p2057-2068.html
   My bibliography  Save this article

Life‐cycle energy and environmental emissions of cargo ships

Author

Listed:
  • Yiqi Zhang
  • Yuan Chang
  • Changbo Wang
  • Jimmy C. H. Fung
  • Alexis K. H. Lau

Abstract

Maritime shipping is under increasing pressure to alleviate its environmental impact. To this end, life‐cycle footprint accounting provides a foundation for taking targeted measures in the green transition of shipping. This study used the process‐based hybrid life‐cycle inventory (LCI) modeling approach to estimate the “cradle‐to‐propeller” footprint of ships, including primary energy consumption, carbon dioxide emissions, and sulfur dioxide emissions. We used the input–output LCI model to calculate the embodied energy and emissions associated with the material and fuel use of ship manufacturing. We used a bottom‐up emission model and global marine traffic data to estimate the operational footprint of different types of ships. Based on 382 cargo ships (including bulk carriers, container ships, and general cargo ships) constructed in mainland China between 2011 and 2015, we estimated that the embodied footprint accounted for 100,000 DWT) establishes the lowest value (46), followed by the small (0–100,000 DWT) bulk carrier (96), the large container ship (133), the small container ship (196), and the small general cargo (238). The bulk carrier was identified as the most energy efficient among the three ship types, and ships with larger capacities (i.e., DWT) had higher energy efficiencies than ships with lower capacities. Our study provides a comprehensive understanding of the life‐cycle footprints of cargo ships, thus enabling better evidence‐based policymaking to transition the global marine‐shipping industry to a future of greener energy.

Suggested Citation

  • Yiqi Zhang & Yuan Chang & Changbo Wang & Jimmy C. H. Fung & Alexis K. H. Lau, 2022. "Life‐cycle energy and environmental emissions of cargo ships," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 2057-2068, December.
  • Handle: RePEc:bla:inecol:v:26:y:2022:i:6:p:2057-2068
    DOI: 10.1111/jiec.13293
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13293
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13293?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Changbo & Chang, Yuan & Zhang, Lixiao & Pang, Mingyue & Hao, Yan, 2017. "A life-cycle comparison of the energy, environmental and economic impacts of coal versus wood pellets for generating heat in China," Energy, Elsevier, vol. 120(C), pages 374-384.
    2. Bullard, Clark W. & Penner, Peter S. & Pilati, David A., 1978. "Net energy analysis : Handbook for combining process and input-output analysis," Resources and Energy, Elsevier, vol. 1(3), pages 267-313, November.
    3. David Laner & Helmut Rechberger & Thomas Astrup, 2014. "Systematic Evaluation of Uncertainty in Material Flow Analysis," Journal of Industrial Ecology, Yale University, vol. 18(6), pages 859-870, December.
    4. Huan Liu & Zhi-Hang Meng & Zhao-Feng Lv & Xiao-Tong Wang & Fan-Yuan Deng & Yang Liu & Yan-Ni Zhang & Meng-Shuang Shi & Qiang Zhang & Ke-Bin He, 2019. "Emissions and health impacts from global shipping embodied in US–China bilateral trade," Nature Sustainability, Nature, vol. 2(11), pages 1027-1033, November.
    5. Chang, Yuan & Huang, Runze & Ries, Robert J. & Masanet, Eric, 2014. "Shale-to-well energy use and air pollutant emissions of shale gas production in China," Applied Energy, Elsevier, vol. 125(C), pages 147-157.
    6. James Corbett, 2016. "Shipping emissions in East Asia," Nature Climate Change, Nature, vol. 6(11), pages 983-984, November.
    7. Dariusz Bernacki, 2021. "Assessing the Link between Vessel Size and Maritime Supply Chain Sustainable Performance," Energies, MDPI, vol. 14(11), pages 1-21, May.
    8. Dhakal, Shobhakar, 2009. "Urban energy use and carbon emissions from cities in China and policy implications," Energy Policy, Elsevier, vol. 37(11), pages 4208-4219, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lixiao Zhang & Qiuhong Hu & Fan Zhang, 2014. "Input-Output Modeling for Urban Energy Consumption in Beijing: Dynamics and Comparison," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    2. Yu Dong & Tongyu Qin & Siyuan Zhou & Lu Huang & Rui Bo & Haibo Guo & Xunzhi Yin, 2020. "Comparative Whole Building Life Cycle Assessment of Energy Saving and Carbon Reduction Performance of Reinforced Concrete and Timber Stadiums—A Case Study in China," Sustainability, MDPI, vol. 12(4), pages 1-24, February.
    3. Li, Yilin & Chen, Bin & Li, Chaohui & Li, Zhi & Chen, Guoqian, 2020. "Energy perspective of Sino-US trade imbalance in global supply chains," Energy Economics, Elsevier, vol. 92(C).
    4. Jean-Baptiste Bahers & Paula Higuera & Anne Ventura & Nicolas Antheaume, 2020. "The “Metal-Energy-Construction Mineral” Nexus in the Island Metabolism: The Case of the Extractive Economy of New Caledonia," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    5. Ahmed, Khalid, 2015. "The sheer scale of China’s urban renewal and CO2 emissions: Multiple structural breaks, long-run relationship and short-run dynamics," MPRA Paper 71035, University Library of Munich, Germany.
    6. Du, Xiaoyun & Meng, Conghui & Guo, Zhenhua & Yan, Hang, 2023. "An improved approach for measuring the efficiency of low carbon city practice in China," Energy, Elsevier, vol. 268(C).
    7. Junbo Wang & Liu Chen & Lu Chen & Xiaohui Zhao & Minxi Wang & Yiyi Ju & Li Xin, 2019. "City-Level Features of Energy Footprints and Carbon Dioxide Emissions in Sichuan Province of China," Energies, MDPI, vol. 12(10), pages 1-14, May.
    8. Wu, X.D. & Guo, J.L. & Chen, G.Q., 2018. "The striking amount of carbon emissions by the construction stage of coal-fired power generation system in China," Energy Policy, Elsevier, vol. 117(C), pages 358-369.
    9. Stern, David I., 1997. "Limits to substitution and irreversibility in production and consumption: A neoclassical interpretation of ecological economics," Ecological Economics, Elsevier, vol. 21(3), pages 197-215, June.
    10. Cai, Xiaomei & Liu, Chan & Zheng, Shuxian & Hu, Han & Tan, Zhanglu, 2023. "Analysis on the evolution characteristics of barite international trade pattern based on complex networks," Resources Policy, Elsevier, vol. 83(C).
    11. Che, Xiao-Jing & Zhou, P. & Chai, Kah-Hin, 2022. "Regional policy effect on photovoltaic (PV) technology innovation: Findings from 260 cities in China," Energy Policy, Elsevier, vol. 162(C).
    12. Yu, Wei & Pagani, Roberto & Huang, Lei, 2012. "CO2 emission inventories for Chinese cities in highly urbanized areas compared with European cities," Energy Policy, Elsevier, vol. 47(C), pages 298-308.
    13. Zhao, Yuanhao & Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Hao, Yan, 2021. "Converting waste cooking oil to biodiesel in China: Environmental impacts and economic feasibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    14. Suh, Sangwon, 2004. "Functions, commodities and environmental impacts in an ecological-economic model," Ecological Economics, Elsevier, vol. 48(4), pages 451-467, April.
    15. Changbo Wang & Lixiao Zhang & Shuying Yang & Mingyue Pang, 2012. "A Hybrid Life-Cycle Assessment of Nonrenewable Energy and Greenhouse-Gas Emissions of a Village-Level Biomass Gasification Project in China," Energies, MDPI, vol. 5(8), pages 1-16, July.
    16. Shang, Hua & Jiang, Li & Pan, Xianyou & Pan, Xiongfeng, 2022. "Green technology innovation spillover effect and urban eco-efficiency convergence: Evidence from Chinese cities," Energy Economics, Elsevier, vol. 114(C).
    17. Chao Liu & Sen Huang & Peng Xu & Zhong-ren Peng, 2018. "Exploring an integrated urban carbon dioxide (CO2) emission model and mitigation plan for new cities," Environment and Planning B, , vol. 45(5), pages 821-841, September.
    18. Xiaofeng Lv & Kun Lin & Lingshan Chen & Yongzhong Zhang, 2022. "Does Retirement Affect Household Energy Consumption Structure? Evidence from a Regression Discontinuity Design," Sustainability, MDPI, vol. 14(19), pages 1-14, September.
    19. Mi, Zhifu & Zhang, Yunkun & Guan, Dabo & Shan, Yuli & Liu, Zhu & Cong, Ronggang & Yuan, Xiao-Chen & Wei, Yi-Ming, 2016. "Consumption-based emission accounting for Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1073-1081.
    20. Li, Xue & Lin, Cong & Wang, Yang & Zhao, Lingying & Duan, Na & Wu, Xudong, 2015. "Analysis of rural household energy consumption and renewable energy systems in Zhangziying town of Beijing," Ecological Modelling, Elsevier, vol. 318(C), pages 184-193.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:26:y:2022:i:6:p:2057-2068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.