TEDAS - Tail Event Driven ASset Allocation
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Bhandari, Rishabh & Das, Sanjiv R., 2009. "Options on portfolios with higher-order moments," Finance Research Letters, Elsevier, vol. 6(3), pages 122-129, September.
- J. Cvitanic & A. Lazrak & L. Martellini & F. Zapatero, 2003. "Optimal allocation to hedge funds: an empirical analysis," Quantitative Finance, Taylor & Francis Journals, vol. 3(1), pages 28-39.
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
- Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
- Giamouridis, Daniel & Vrontos, Ioannis D., 2007. "Hedge fund portfolio construction: A comparison of static and dynamic approaches," Journal of Banking & Finance, Elsevier, vol. 31(1), pages 199-217, January.
- Hans Bystrom, 2004. "Orthogonal GARCH and covariance matrix forecasting: The Nordic stock markets during the Asian financial crisis 1997-1998," The European Journal of Finance, Taylor & Francis Journals, vol. 10(1), pages 44-67.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018.
"Asset allocation strategies based on penalized quantile regression,"
Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
- Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2015. "Asset Allocation Strategies Based on Penalized Quantile Regression," Papers 1507.00250, arXiv.org.
- Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2015. "Asset Allocation Strategies Based On Penalized Quantile Regression," "Marco Fanno" Working Papers 0199, Dipartimento di Scienze Economiche "Marco Fanno".
- Wolfgang Karl Härdle & David Kuo Chuen Lee & Sergey Nasekin & Alla Petukhina, 2018.
"Tail Event Driven ASset allocation: evidence from equity and mutual funds’ markets,"
Journal of Asset Management, Palgrave Macmillan, vol. 19(1), pages 49-63, January.
- Härdle, Wolfgang Karl & Lee, David Kuo Chuen & Nasekin, Sergey & Ni, Xinwen & Petukhina, Alla, 2015. "Tail event driven ASset allocation: Evidence from equity and mutual funds' markets," SFB 649 Discussion Papers 2015-045, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Chen, Cathy Yi-Hsuan & Chiang, Thomas C. & Härdle, Wolfgang Karl, 2016. "Downside risk and stock returns: An empirical analysis of the long-run and short-run dynamics from the G-7 Countries," SFB 649 Discussion Papers 2016-001, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- repec:hum:wpaper:sfb649dp2016-001 is not listed on IDEAS
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- repec:hum:wpaper:sfb649dp2014-032 is not listed on IDEAS
- Harris, Richard D.F. & Mazibas, Murat, 2013. "Dynamic hedge fund portfolio construction: A semi-parametric approach," Journal of Banking & Finance, Elsevier, vol. 37(1), pages 139-149.
- Harris, Richard D.F. & Mazibas, Murat, 2010. "Dynamic hedge fund portfolio construction," International Review of Financial Analysis, Elsevier, vol. 19(5), pages 351-357, December.
- Serge Darolles & Jeremy Dudek & Gaëlle Le Fol, 2014. "Liquidity risk and contagion for liquid funds," Post-Print hal-01632776, HAL.
- Seyoung Park & Eun Ryung Lee & Sungchul Lee & Geonwoo Kim, 2019. "Dantzig Type Optimization Method with Applications to Portfolio Selection," Sustainability, MDPI, vol. 11(11), pages 1-32, June.
- Andrea Bucci, 2020.
"Realized Volatility Forecasting with Neural Networks,"
Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
- Andrea Bucci, 0. "Realized Volatility Forecasting with Neural Networks," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
- Bucci, Andrea, 2019. "Realized Volatility Forecasting with Neural Networks," MPRA Paper 95443, University Library of Munich, Germany.
- Serge Darolles & Jeremy Dudek & Gaëlle Le Fol, 2012.
"Liquidity Contagion. The Emerging Sovereign Debt Markets example,"
Post-Print
hal-01632803, HAL.
- Serge Darolles & Jeremy Dudek & Gaëlle Le Fol, 2013. "Liquidity Contagion. The Emerging Sovereign Debt Markets example," Post-Print hal-01632782, HAL.
- Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.
- Yang, Yanlin & Hu, Xuemei & Jiang, Huifeng, 2022. "Group penalized logistic regressions predict up and down trends for stock prices," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
- Fang, Tong & Lee, Tae-Hwy & Su, Zhi, 2020.
"Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection,"
Journal of Empirical Finance, Elsevier, vol. 58(C), pages 36-49.
- Tong Fang & Tae-Hwy Lee & Zhi Su, 2020. "Predicting the Long-term Stock Market Volatility: A GARCH-MIDAS Model with Variable Selection," Working Papers 202009, University of California at Riverside, Department of Economics.
- Massimiliano Caporin & Francesco Poli, 2017. "Building News Measures from Textual Data and an Application to Volatility Forecasting," Econometrics, MDPI, vol. 5(3), pages 1-46, August.
- Marcelo Scherer Perlin & Mauro Mastella & Daniel Francisco Vancin & Henrique Pinto Ramos, 2021. "A GARCH Tutorial with R," RAC - Revista de Administração Contemporânea (Journal of Contemporary Administration), ANPAD - Associação Nacional de Pós-Graduação e Pesquisa em Administração, vol. 25(1), pages 200088-2000.
- Arismendi, Juan & Genaro, Alan De, 2016. "A Monte Carlo multi-asset option pricing approximation for general stochastic processes," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 75-99.
- Vincenzo Candila & Oguzhan Cepni & Giampiero M. Gallo & Rangan Gupta, 2024. "Influence of Local and Global Economic Policy Uncertainty on the Volatility of US State-Level Equity Returns: Evidence from a GARCH-MIDAS Approach with Shrinkage and Cluster Analysis," Working Papers 202437, University of Pretoria, Department of Economics.
- Benjamin Poignard & Manabu Asai, 2023.
"High‐dimensional sparse multivariate stochastic volatility models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 44(1), pages 4-22, January.
- Benjamin Poignard & Manabu Asai, 2022. "High-Dimensional Sparse Multivariate Stochastic Volatility Models," Papers 2201.08584, arXiv.org, revised May 2022.
- Ding, Yi & Kambouroudis, Dimos & McMillan, David G., 2021. "Forecasting realised volatility: Does the LASSO approach outperform HAR?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
- Anders Bredahl Kock & Haihan Tang, 2014. "Inference in High-dimensional Dynamic Panel Data Models," CREATES Research Papers 2014-58, Department of Economics and Business Economics, Aarhus University.
- Mike K. P. So & Wing Ki Liu & Amanda M. Y. Chu, 2018. "Bayesian Shrinkage Estimation Of Time-Varying Covariance Matrices In Financial Time Series," Advances in Decision Sciences, Asia University, Taiwan, vol. 22(1), pages 369-404, December.
- Sullivan Hué, 2022. "GAM(L)A: An econometric model for interpretable machine learning," French Stata Users' Group Meetings 2022 19, Stata Users Group.
- Adam, Alexandre & Houkari, Mohamed & Laurent, Jean-Paul, 2008. "Spectral risk measures and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1870-1882, September.
- Virbickaitė, Audronė & Ausín, M. Concepción & Galeano, Pedro, 2016.
"A Bayesian non-parametric approach to asymmetric dynamic conditional correlation model with application to portfolio selection,"
Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 814-829.
- Audrone Virbickaite & M. Concepci'on Aus'in & Pedro Galeano, 2013. "A Bayesian Non-Parametric Approach to Asymmetric Dynamic Conditional Correlation Model With Application to Portfolio Selection," Papers 1301.5129, arXiv.org, revised Jan 2014.
More about this item
Keywords
Portfolio optimization; asset allocation; adaptive lasso; quantile regression; value-at-risk;All these keywords.
JEL classification:
- C00 - Mathematical and Quantitative Methods - - General - - - General
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
NEP fields
This paper has been announced in the following NEP Reports:- NEP-RMG-2014-07-05 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2014-032. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.