IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2012-006.html
   My bibliography  Save this paper

Quantile regression in risk calibration

Author

Listed:
  • Chao, Shih-Kang
  • Härdle, Wolfgang Karl
  • Wang, Weining

Abstract

Financial risk control has always been challenging and becomes now an even harder problem as joint extreme events occur more frequently. For decision makers and government regulators, it is therefore important to obtain accurate information on the interdependency of risk factors. Given a stressful situation for one market participant, one likes to measure how this stress affects other factors. The CoVaR (Conditional VaR) framework has been developed for this purpose. The basic technical elements of CoVaR estimation are two levels of quantile regression: one on market risk factors; another on individual risk factor. Tests on the functional form of the two-level quantile regression reject the linearity. A flexible semiparametric modeling framework for CoVaR is proposed. A partial linear model (PLM) is analyzed. In applying the technology to stock data covering the crisis period, the PLM outperforms in the crisis time, with the justification of the backtesting procedures. Moreover, using the data on global stock markets indices, the analysis on marginal contribution of risk (MCR) defined as the local first order derivative of the quantile curve sheds some light on the source of the global market risk.

Suggested Citation

  • Chao, Shih-Kang & Härdle, Wolfgang Karl & Wang, Weining, 2012. "Quantile regression in risk calibration," SFB 649 Discussion Papers 2012-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2012-006
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/56704/1/684402408.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James W. Taylor, 2008. "Using Exponentially Weighted Quantile Regression to Estimate Value at Risk and Expected Shortfall," Journal of Financial Econometrics, Oxford University Press, vol. 6(3), pages 382-406, Summer.
    2. Kuan, Chung-Ming & Yeh, Jin-Huei & Hsu, Yu-Chin, 2009. "Assessing value at risk with CARE, the Conditional Autoregressive Expectile models," Journal of Econometrics, Elsevier, vol. 150(2), pages 261-270, June.
    3. Cai, Zongwu & Wang, Xian, 2008. "Nonparametric estimation of conditional VaR and expected shortfall," Journal of Econometrics, Elsevier, vol. 147(1), pages 120-130, November.
    4. Härdle, Wolfgang Karl & Ritov, Ya'acov & Song, Song, 2010. "Partial linear quantile regression and bootstrap confidence bands," SFB 649 Discussion Papers 2010-002, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. Len Umantsev & Victor Chernozhukov, 2001. "Conditional value-at-risk: Aspects of modeling and estimation," Empirical Economics, Springer, vol. 26(1), pages 271-292.
    6. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    7. Kee-Hong Bae & G. Andrew Karolyi & René M. Stulz, 2003. "A New Approach to Measuring Financial Contagion," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 717-763, July.
    8. Adams, Zeno & Füss, Roland & Gropp, Reint, 2014. "Spillover Effects among Financial Institutions: A State-Dependent Sensitivity Value-at-Risk Approach," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(3), pages 575-598, June.
    9. Lobato, Ignacio & Nankervis, John C & Savin, N E, 2001. "Testing for Autocorrelation Using a Modified Box-Pierce Q Test," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(1), pages 187-205, February.
    10. Li, Qi, 2000. "Efficient Estimation of Additive Partially Linear Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 41(4), pages 1073-1092, November.
    11. Xin Huang & Hao Zhou & Haibin Zhu, 2012. "Systemic Risk Contributions," Journal of Financial Services Research, Springer;Western Finance Association, vol. 42(1), pages 55-83, October.
    12. Härdle, Wolfgang K. & Song, Song, 2010. "Confidence Bands In Quantile Regression," Econometric Theory, Cambridge University Press, vol. 26(4), pages 1180-1200, August.
    13. Nikolaus Hautsch & Julia Schaumburg & Melanie Schienle, 2015. "Financial Network Systemic Risk Contributions," Review of Finance, European Finance Association, vol. 19(2), pages 685-738.
    14. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
    15. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    16. Härdle, Wolfgang Karl & Spokoiny, Vladimir & Wang, Weining, 2010. "Local quantile regression," SFB 649 Discussion Papers 2011-005, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    17. Carroll, R. J. & Härdle, W., 1989. "Symmetrized nearest neighbor regression estimates," Statistics & Probability Letters, Elsevier, vol. 7(4), pages 315-318, February.
    18. James W. Taylor, 2008. "Estimating Value at Risk and Expected Shortfall Using Expectiles," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 231-252, Spring.
    19. Schaumburg, Julia, 2010. "Predicting extreme VaR: Nonparametric quantile regression with refinements from extreme value theory," SFB 649 Discussion Papers 2010-009, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zevallos, Mauricio & Villarreal, Fernanda & Del Carpio, Carlos & Abbara, Omar, 2014. "Influencia de los precios de los metales y el mercado internacional en el riesgo bursátil peruano," Working Papers 2014-023, Banco Central de Reserva del Perú.
    2. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
    3. repec:hum:wpaper:sfb649dp2014-066 is not listed on IDEAS
    4. Wang, Gang-Jin & Jiang, Zhi-Qiang & Lin, Min & Xie, Chi & Stanley, H. Eugene, 2018. "Interconnectedness and systemic risk of China's financial institutions," Emerging Markets Review, Elsevier, vol. 35(C), pages 1-18.
    5. Mauro Bernardi & Ghislaine Gayraud & Lea Petrella, 2013. "Bayesian inference for CoVaR," Papers 1306.2834, arXiv.org, revised Nov 2013.
    6. Bianconi, Marcelo & Hua, Xiaxin & Tan, Chih Ming, 2015. "Determinants of systemic risk and information dissemination," International Review of Economics & Finance, Elsevier, vol. 38(C), pages 352-368.
    7. Dong, Xiyong & Yoon, Seong-Min, 2023. "Effect of weather and environmental attentions on financial system risks: Evidence from Chinese high- and low-carbon assets," Energy Economics, Elsevier, vol. 121(C).
    8. Caporin, Massimiliano & Garcia-Jorcano, Laura & Jimenez-Martin, Juan-Angel, 2021. "TrAffic LIght system for systemic Stress: TALIS3," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    9. Härdle, Wolfgang Karl & Wang, Weining & Yu, Lining, 2016. "TENET: Tail-Event driven NETwork risk," Journal of Econometrics, Elsevier, vol. 192(2), pages 499-513.
    10. Lea Petrella & Alessandro G. Laporta & Luca Merlo, 2019. "Cross-Country Assessment of Systemic Risk in the European Stock Market: Evidence from a CoVaR Analysis," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 169-186, November.
    11. Zhiwei Zhang & Dayong Zhang & Fei Wu & Qiang Ji, 2021. "Systemic risk in the Chinese financial system: A copula‐based network approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2044-2063, April.
    12. Takashi Miyazaki, 2019. "Clarifying the Response of Gold Return to Financial Indicators: An Empirical Comparative Analysis Using Ordinary Least Squares, Robust and Quantile Regressions," JRFM, MDPI, vol. 12(1), pages 1-18, February.
    13. Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
    14. Mauro Bernardi & Leopoldo Catania, 2016. "Portfolio Optimisation Under Flexible Dynamic Dependence Modelling," Papers 1601.05199, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2012-006 is not listed on IDEAS
    2. Alex Huang, 2013. "Value at risk estimation by quantile regression and kernel estimator," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 225-251, August.
    3. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    4. Schaumburg, Julia, 2012. "Predicting extreme value at risk: Nonparametric quantile regression with refinements from extreme value theory," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4081-4096.
    5. Nikolaus Hautsch & Julia Schaumburg & Melanie Schienle, 2015. "Financial Network Systemic Risk Contributions," Review of Finance, European Finance Association, vol. 19(2), pages 685-738.
    6. Hamidi, Benjamin & Maillet, Bertrand & Prigent, Jean-Luc, 2014. "A dynamic autoregressive expectile for time-invariant portfolio protection strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 46(C), pages 1-29.
    7. Ewa Ratuszny, 2015. "Risk Modeling of Commodities using CAViaR Models, the Encompassing Method and the Combined Forecasts," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 15, pages 129-156.
    8. Tobias Adrian & Markus K. Brunnermeier, 2016. "CoVaR," American Economic Review, American Economic Association, vol. 106(7), pages 1705-1741, July.
      • Tobias Adrian & Markus K. Brunnermeier, 2008. "CoVaR," Staff Reports 348, Federal Reserve Bank of New York.
      • Tobias Adrian & Markus K. Brunnermeier, 2011. "CoVaR," NBER Working Papers 17454, National Bureau of Economic Research, Inc.
    9. Derek Bunn, Arne Andresen, Dipeng Chen, Sjur Westgaard, 2016. "Analysis and Forecasting of Electricty Price Risks with Quantile Factor Models," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    10. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    11. Schaumburg, Julia, 2010. "Predicting extreme VaR: Nonparametric quantile regression with refinements from extreme value theory," SFB 649 Discussion Papers 2010-009, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. Laura Garcia-Jorcano & Lidia Sanchis-Marco, 2023. "Measuring Systemic Risk Using Multivariate Quantile-Located ES Models," Journal of Financial Econometrics, Oxford University Press, vol. 21(1), pages 1-72.
    13. Antonio Rubia Serrano & Lidia Sanchis-Marco, 2015. "Measuring Tail-Risk Cross-Country Exposures in the Banking Industry," Working Papers. Serie AD 2015-01, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    14. Rubia, Antonio & Sanchis-Marco, Lidia, 2013. "On downside risk predictability through liquidity and trading activity: A dynamic quantile approach," International Journal of Forecasting, Elsevier, vol. 29(1), pages 202-219.
    15. Gery Geenens & Richard Dunn, 2017. "A nonparametric copula approach to conditional Value-at-Risk," Papers 1712.05527, arXiv.org, revised Oct 2019.
    16. Benjamin Hamidi & Emmanuel Jurczenko & Bertrand Maillet, 2009. "D'un multiple conditionnel en assurance de portefeuille : CAViaR pour les gestionnaires ?," Post-Print halshs-00389773, HAL.
    17. Mauro Bernardi & Ghislaine Gayraud & Lea Petrella, 2013. "Bayesian inference for CoVaR," Papers 1306.2834, arXiv.org, revised Nov 2013.
    18. Bianconi, Marcelo & Hua, Xiaxin & Tan, Chih Ming, 2015. "Determinants of systemic risk and information dissemination," International Review of Economics & Finance, Elsevier, vol. 38(C), pages 352-368.
    19. Huang, Jinbo & Ding, Ashley & Li, Yong & Lu, Dong, 2020. "Increasing the risk management effectiveness from higher accuracy: A novel non-parametric method," Pacific-Basin Finance Journal, Elsevier, vol. 62(C).
    20. Peng, Wei & Hu, Shichao & Chen, Wang & Zeng, Yu-feng & Yang, Lu, 2019. "Modeling the joint dynamic value at risk of the volatility index, oil price, and exchange rate," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 137-149.
    21. Haugom, Erik & Ray, Rina & Ullrich, Carl J. & Veka, Steinar & Westgaard, Sjur, 2016. "A parsimonious quantile regression model to forecast day-ahead value-at-risk," Finance Research Letters, Elsevier, vol. 16(C), pages 196-207.

    More about this item

    Keywords

    CoVaR; Value-at-Risk; quantile regression; locally linear quantile regression; partial linear model; semiparametric model;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G01 - Financial Economics - - General - - - Financial Crises
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G20 - Financial Economics - - Financial Institutions and Services - - - General
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2012-006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.