IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v7y1989i4p315-318.html
   My bibliography  Save this article

Symmetrized nearest neighbor regression estimates

Author

Listed:
  • Carroll, R. J.
  • Härdle, W.

Abstract

We consider univariate nonparametric regression. Two standard nonparametric regression function estimates are kernel estimates and nearest neighbor estimates. Mack (1981) noted that both methods can be defined with respect to a kernel or weighting function, and that for a given kernel and a suitable choice of bandwidth, the optimal mean squared error is the same asymptotically for kernel and nearest neighbor estimates. Yang (1981) defined a new type of nearest neighbor regression estimate using the empirical distribution function of the predictors to define the window over which to average. This has the effect of forcing the number of neighbors to be the same both above and below the value of the predictor of interest; we call these symmetrized nearest neighbor estimates. The estimate is a kernel regression estimate with "predictors" given by the empirical distribution function of the true predictors. We show that for estimating the regression function at a point, the optimum mean squared error of this estimate differs from that of the optimum mean squared error for kernel and ordinary nearest neighbor estimates. No estimate dominates the others. They are asymptotically equivalent with respect to mean squared error if one is estimating the regression function at a mode of the predictor.

Suggested Citation

  • Carroll, R. J. & Härdle, W., 1989. "Symmetrized nearest neighbor regression estimates," Statistics & Probability Letters, Elsevier, vol. 7(4), pages 315-318, February.
  • Handle: RePEc:eee:stapro:v:7:y:1989:i:4:p:315-318
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0167-7152(89)90114-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Härdle, Wolfgang Karl & Wang, Weining & Yu, Lining, 2016. "TENET: Tail-Event driven NETwork risk," Journal of Econometrics, Elsevier, vol. 192(2), pages 499-513.
    2. Yanqin Fan & Ruixuan Liu, 2015. "Symmetrized Multivariate k -NN Estimators," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 828-848, December.
    3. Chao, Shih-Kang & Härdle, Wolfgang Karl & Wang, Weining, 2012. "Quantile regression in risk calibration," SFB 649 Discussion Papers 2012-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. repec:hum:wpaper:sfb649dp2012-006 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:7:y:1989:i:4:p:315-318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.