IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb475/200501.html
   My bibliography  Save this paper

Consistency and robustness of kernel based regression

Author

Listed:
  • Christmann, Andreas
  • Steinwart, Ingo

Abstract

We investigate properties of kernel based regression (KBR) methods which are inspired by the convex risk minimization method of support vector machines. We first describe the relation between the used loss function of the KBR method and the tail of the response variable Y . We then establish a consistency result for KBR and give assumptions for the existence of the influence function. In particular, our results allow to choose the loss function and the kernel to obtain computational tractable and consistent KBR methods having bounded influence functions. Furthermore, bounds for the sensitivity curve which is a finite sample version of the influence function are developed, and some numerical experiments are discussed.

Suggested Citation

  • Christmann, Andreas & Steinwart, Ingo, 2005. "Consistency and robustness of kernel based regression," Technical Reports 2005,01, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  • Handle: RePEc:zbw:sfb475:200501
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/22592/1/tr01-05.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Struyf, Anja J. & Rousseeuw, Peter J., 1999. "Halfspace Depth and Regression Depth Characterize the Empirical Distribution," Journal of Multivariate Analysis, Elsevier, vol. 69(1), pages 135-153, April.
    2. Tomaso Poggio & Ryan Rifkin & Sayan Mukherjee & Partha Niyogi, 2004. "General conditions for predictivity in learning theory," Nature, Nature, vol. 428(6981), pages 419-422, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jorge Daniel Mello-Román & Adolfo Hernández & Julio César Mello-Román, 2021. "Improved Predictive Ability of KPLS Regression with Memetic Algorithms," Mathematics, MDPI, vol. 9(5), pages 1-13, March.
    2. Marin-Galiano, Marcos & Luebke, Karsten & Christmann, Andreas & Rüping, Stefan, 2005. "Determination of hyper-parameters for kernel based classification and regression," Technical Reports 2005,38, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    3. Christmann, Andreas & Steinwart, Ingo & Hubert, Mia, 2006. "Robust Learning from Bites for Data Mining," Technical Reports 2006,03, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    4. Christmann, Andreas & Steinwart, Ingo & Hubert, Mia, 2007. "Robust learning from bites for data mining," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 347-361, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    2. Stanislav Nagy, 2021. "Halfspace depth does not characterize probability distributions," Statistical Papers, Springer, vol. 62(3), pages 1135-1139, June.
    3. Gather, Ursula & Fried, Roland & Lanius, Vivian, 2005. "Robust detail-preserving signal extraction," Technical Reports 2005,54, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    4. Yi He & John H. J. Einmahl, 2017. "Estimation of extreme depth-based quantile regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 449-461, March.
    5. Debruyne, Michiel & Christmann, Andreas & Hubert, Mia & Suykens, Johan A.K., 2010. "Robustness of reweighted Least Squares Kernel Based Regression," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 447-463, February.
    6. Jonas Baillien & Irène Gijbels & Anneleen Verhasselt, 2023. "Flexible asymmetric multivariate distributions based on two-piece univariate distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(1), pages 159-200, February.
    7. Xiaohui Liu & Karl Mosler & Pavlo Mozharovskyi, 2017. "Fast computation of Tukey trimmed regions and median in dimension p > 2," Working Papers 2017-71, Center for Research in Economics and Statistics.
    8. Hassairi, Abdelhamid & Regaieg, Ons, 2008. "On the Tukey depth of a continuous probability distribution," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2308-2313, October.
    9. Christmann, Andreas & Steinwart, Ingo & Hubert, Mia, 2006. "Robust Learning from Bites for Data Mining," Technical Reports 2006,03, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    10. Christmann, Andreas & Steinwart, Ingo, 2003. "On robustness properties of convex risk minimization methods for pattern recognition," Technical Reports 2003,15, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    11. Christmann, Andreas, 2004. "Regression depth and support vector machine," Technical Reports 2004,54, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    12. Petra Laketa & Stanislav Nagy, 2022. "Halfspace depth for general measures: the ray basis theorem and its consequences," Statistical Papers, Springer, vol. 63(3), pages 849-883, June.
    13. Kong, Linglong & Zuo, Yijun, 2010. "Smooth depth contours characterize the underlying distribution," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2222-2226, October.
    14. Lanius, Vivian & Gather, Ursula, 2007. "Robust online signal extraction from multivariate time series," Technical Reports 2007,38, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    15. Koshevoy, Gleb A., 2002. "The Tukey Depth Characterizes the Atomic Measure," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 360-364, November.
    16. Wei, Bei & Lee, Stephen M.S., 2012. "Second-order accuracy of depth-based bootstrap confidence regions," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 112-123.
    17. Gather, Ursula & Davies, P. Laurie, 2004. "Robust Statistics," Papers 2004,20, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    18. Bernholt, Thorsten & Nunkesser, Robin & Schettlinger, Karen, 2005. "Computing the Least Quartile Difference Estimator in the Plane," Technical Reports 2005,51, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    19. Hamel, Andreas H. & Kostner, Daniel, 2018. "Cone distribution functions and quantiles for multivariate random variables," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 97-113.
    20. Brighton, Henry & Gigerenzer, Gerd, 2015. "The bias bias," Journal of Business Research, Elsevier, vol. 68(8), pages 1772-1784.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:200501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/isdorde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.