IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb475/200538.html
   My bibliography  Save this paper

Determination of hyper-parameters for kernel based classification and regression

Author

Listed:
  • Marin-Galiano, Marcos
  • Luebke, Karsten
  • Christmann, Andreas
  • Rüping, Stefan

Abstract

The optimization of the hyper-parameters of a statistical procedure or machine learning task is a crucial step for obtaining a minimal error. Unfortunately, the optimization of hyper-parameters usually requires many runs of the procedure and hence is very costly. A more detailed knowledge of the dependency of the performance of a procedure on its hyper-parameters can help to speed up this process. In this paper, we investigate the case of kernel-based classifiers and regression estimators which belong to the class of convex risk minimization methods from machine learning. In an empirical investigation, the response surfaces of nonlinear support vector machines and kernel logistic regression are analyzed and the performance of several algorithms for determining hyper-parameters is investigated. The rest of the paper is organized as follows: Section 2 briefly outlines kernel based classification and regression methods. Section 3 gives details on several methods for optimizing the hyper-parameters of statistical procedures. Then, some numerical examples are presented in Section 4. Section 5 contains a discussion. Finally, all figures are given in the appendix.

Suggested Citation

  • Marin-Galiano, Marcos & Luebke, Karsten & Christmann, Andreas & Rüping, Stefan, 2005. "Determination of hyper-parameters for kernel based classification and regression," Technical Reports 2005,38, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  • Handle: RePEc:zbw:sfb475:200538
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/22628/1/tr38-05.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christmann, Andreas & Steinwart, Ingo, 2005. "Consistency and robustness of kernel based regression," Technical Reports 2005,01, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    2. Morik, Katharina & Imhoff, Michael & Brockhausen, Peter & Joachims, Thorsten & Gather, Ursula, 2000. "Knowledge discovery and knowledge validation in intensive care," Technical Reports 2000,14, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christmann, Andreas & Steinwart, Ingo & Hubert, Mia, 2006. "Robust Learning from Bites for Data Mining," Technical Reports 2006,03, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    2. Fried, Roland & Gather, Ursula & Imhoff, Michael, 2001. "Pattern recognition in intensive care online monitoring," Technical Reports 2001,15, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    3. Jorge Daniel Mello-Román & Adolfo Hernández & Julio César Mello-Román, 2021. "Improved Predictive Ability of KPLS Regression with Memetic Algorithms," Mathematics, MDPI, vol. 9(5), pages 1-13, March.
    4. Christmann, Andreas & Steinwart, Ingo & Hubert, Mia, 2007. "Robust learning from bites for data mining," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 347-361, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:200538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/isdorde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.