IDEAS home Printed from https://ideas.repec.org/p/zbw/iwhdps/iwh-10-06.html
   My bibliography  Save this paper

Die Verlustverteilung des unternehmerischen Forderungsausfallrisikos – Eine simulationsbasierte Modellierung

Author

Listed:
  • Dannenberg, Henry

Abstract

Ein wichtiges Instrument des Risikocontrollings stellt die Unterlegung von Risiken mit Eigenkapital- bzw. Liquiditätsreserven dar. Hierfür ist es erforderlich, für alle wesentlichen Einzelrisiken Wahrscheinlichkeitsverteilungen der möglichen Verluste zu bestimmen, auf deren Grundlage die Ermittlung des Eigenkapitalbedarfs erfolgen kann. In der vorliegenden Arbeit wird ein simulationsbasiertes Modell vorgestellt, daß eine Bewertung des Forderungsausfallrisikos eines gewerblichen Unternehmens ermöglicht. Es werden Wege aufgezeigt, wie die Risikokomponenten Ausfallwahrscheinlichkeit, Ausfallquote und Forderungshöhe zum Ausfallzeitpunkt geschätzt werden können. Dabei werden sowohl Unsicherheiten bei der Bestimmung der Inputfaktoren als auch deren Variabilität berücksichtigt. Für den Fall, daß ein Unternehmen nicht in der Lage ist, alle Risikokomponenten selbständig zu schätzen, werden auf Grundlage einer empirischen Erhebung Verteilungsfunktionen zur Bestimmung der Ausfallwahrscheinlichkeit und der Ausfallquote zur Verfügung gestellt.

Suggested Citation

  • Dannenberg, Henry, 2006. "Die Verlustverteilung des unternehmerischen Forderungsausfallrisikos – Eine simulationsbasierte Modellierung," IWH Discussion Papers 10/2006, Halle Institute for Economic Research (IWH).
  • Handle: RePEc:zbw:iwhdps:iwh-10-06
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/23755/1/10-06.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wiginton, John C., 1980. "A Note on the Comparison of Logit and Discriminant Models of Consumer Credit Behavior," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 15(3), pages 757-770, September.
    2. Dannenberg, Henry, 2005. "Sind Kreditoreneigenschaften als Indikatoren zur Quantifizierung der Höhe des Forderungsausfallrisikos nutzbar?," Wirtschaft im Wandel, Halle Institute for Economic Research (IWH), vol. 11(12), pages 388-396.
    3. Bemmann, Martin, 2005. "Verbesserung der Vergleichbarkeit von Schätzgüteergebnissen von Insolvenzprognosestudien," Dresden Discussion Paper Series in Economics 08/05, Technische Universität Dresden, Faculty of Business and Economics, Department of Economics.
    4. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    5. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
    6. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    7. Martin, Daniel, 1977. "Early warning of bank failure : A logit regression approach," Journal of Banking & Finance, Elsevier, vol. 1(3), pages 249-276, November.
    8. Greg M. Gupton, 2005. "Advancing Loss Given Default Prediction Models: How the Quiet Have Quickened," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 34(2), pages 185-230, July.
    9. Elisa Luciano & Robert Kast, 2001. "A Value at Risk Approach to Background Risk," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 26(2), pages 91-115, September.
    10. Kimberly M. Thompson, 2002. "Variability and Uncertainty Meet Risk Management and Risk Communication," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 647-654, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Halling & Evelyn Hayden, 2008. "Bank failure prediction: a two-step survival time approach," IFC Bulletins chapters, in: Bank for International Settlements (ed.), The IFC's contribution to the 56th ISI Session, Lisbon, August 2007, volume 28, pages 48-73, Bank for International Settlements.
    2. Wolfgang K. Härdle & Rouslan A. Moro & Dorothea Schäfer, 2004. "Rating Companies with Support Vector Machines," Discussion Papers of DIW Berlin 416, DIW Berlin, German Institute for Economic Research.
    3. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    4. Moro, Russ & Härdle, Wolfgang Karl & Aliakbari, Saeideh & Hoffmann, Linda, 2011. "Forecasting corporate distress in the Asian and Pacific region," SFB 649 Discussion Papers 2011-023, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. Petr Jakubík & Petr Teplý, 2011. "The JT Index as an Indicator of Financial Stability of Corporate Sector," Prague Economic Papers, Prague University of Economics and Business, vol. 2011(2), pages 157-176.
    6. Goriunov Dmytro & Venzhyk Katerina, 2013. "Loan Default Prediction in Ukrainian Retail Banking," EERC Working Paper Series 13/07e, EERC Research Network, Russia and CIS.
    7. Christian Lohmann & Thorsten Ohliger, 2020. "Bankruptcy prediction and the discriminatory power of annual reports: empirical evidence from financially distressed German companies," Journal of Business Economics, Springer, vol. 90(1), pages 137-172, February.
    8. Lohmann, Christian & Möllenhoff, Steffen, 2023. "Dark premonitions: Pre-bankruptcy investor attention and behavior," Journal of Banking & Finance, Elsevier, vol. 151(C).
    9. Westgaard, Sjur & van der Wijst, Nico, 2001. "Default probabilities in a corporate bank portfolio: A logistic model approach," European Journal of Operational Research, Elsevier, vol. 135(2), pages 338-349, December.
    10. Suzan Hol, 2006. "The influence of the business cycle on bankruptcy probability," Discussion Papers 466, Statistics Norway, Research Department.
    11. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    12. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Forecast bankruptcy using a blend of clustering and MARS model - Case of US banks," Post-Print halshs-01314553, HAL.
    13. Nijskens, Rob & Mokas, Dimitris, 2019. "Credit Risk in Commercial Real Estate Bank Loans : The Role of Idiosyncratic versus Macro-Economic Factors," Other publications TiSEM ea4f2f0e-dc50-4987-91d3-6, Tilburg University, School of Economics and Management.
    14. Paramonovs Sergejs & Ijevleva Ksenija, 2015. "The Role of Marketing Tools in the Improvement of Consumers Financial Literacy," Acta Universitatis Sapientiae, Economics and Business, Sciendo, vol. 27(1), pages 40-45, December.
    15. Wolfgang Härdle & Yuh-Jye Lee & Dorothea Schäfer & Yi-Ren Yeh, 2009. "Variable selection and oversampling in the use of smooth support vector machines for predicting the default risk of companies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(6), pages 512-534.
    16. Yao-Zhi Xu & Jian-Lin Zhang & Ying Hua & Lin-Yue Wang, 2019. "Dynamic Credit Risk Evaluation Method for E-Commerce Sellers Based on a Hybrid Artificial Intelligence Model," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    17. Anatoly Peresetsky & Alexandr Karminsky & Sergei Golovan, 2011. "Probability of default models of Russian banks," Economic Change and Restructuring, Springer, vol. 44(4), pages 297-334, November.
    18. repec:hum:wpaper:sfb649dp2008-005 is not listed on IDEAS
    19. Moro Russ A. & Härdle Wolfgang K. & Schäfer Dorothea, 2017. "Company rating with support vector machines," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 55-67, June.
    20. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    21. International Association of Deposit Insurers, 2011. "Evaluation of Deposit Insurance Fund Sufficiency on the Basis of Risk Analysis," IADI Research Papers 11-11, International Association of Deposit Insurers.

    More about this item

    Keywords

    Simulation; Forderungsausfallrisiko; Risikobewertung; simulation; risk of bad debt losses; risk assessment;
    All these keywords.

    JEL classification:

    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:iwhdps:iwh-10-06. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/iwhhhde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.