IDEAS home Printed from https://ideas.repec.org/a/spr/jbecon/v90y2020i1d10.1007_s11573-019-00938-1.html
   My bibliography  Save this article

Bankruptcy prediction and the discriminatory power of annual reports: empirical evidence from financially distressed German companies

Author

Listed:
  • Christian Lohmann

    (University of Wuppertal)

  • Thorsten Ohliger

    (parcIT GmbH)

Abstract

The structural and linguistic characteristics of companies’ annual reports (e.g., their length, complexity, and linguistic tone) and the qualitative information they contain (e.g., on the risks a company potentially faces) provide useful insights that can help increase the accuracy of predicting bankruptcy. In this study we use a sample of German companies that we compiled through propensity score matching to examine what type of textual information allows us to discriminate accurately between companies that are likely to go bankrupt and companies that, although financially distressed, are likely to remain solvent. Our findings provide empirical evidence that both the structural and linguistic characteristics of annual reports and the qualitative information they contain help discriminate between companies that are effectively bankrupt and companies that are solvent but financially distressed. Furthermore, this study provides empirical evidence that the “management obfuscation hypothesis” is valid because the tone of annual reports produced by bankrupt companies is quantifiably less negative than that of reports produced by companies that, although financially distressed, are likely to remain solvent.

Suggested Citation

  • Christian Lohmann & Thorsten Ohliger, 2020. "Bankruptcy prediction and the discriminatory power of annual reports: empirical evidence from financially distressed German companies," Journal of Business Economics, Springer, vol. 90(1), pages 137-172, February.
  • Handle: RePEc:spr:jbecon:v:90:y:2020:i:1:d:10.1007_s11573-019-00938-1
    DOI: 10.1007/s11573-019-00938-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11573-019-00938-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11573-019-00938-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Platt, Harlan D. & Platt, Marjorie B., 1991. "A note on the use of industry-relative ratios in bankruptcy prediction," Journal of Banking & Finance, Elsevier, vol. 15(6), pages 1183-1194, December.
    2. Lev, B, 1969. "Industry Averages As Targets For Financial Ratios," Journal of Accounting Research, Wiley Blackwell, vol. 7(2), pages 290-299.
    3. J. C. Neves & A. Vieira, 2006. "Improving bankruptcy prediction with Hidden Layer Learning Vector Quantization," European Accounting Review, Taylor & Francis Journals, vol. 15(2), pages 253-271.
    4. John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2008. "In Search of Distress Risk," Journal of Finance, American Finance Association, vol. 63(6), pages 2899-2939, December.
    5. Black, Fischer & Cox, John C, 1976. "Valuing Corporate Securities: Some Effects of Bond Indenture Provisions," Journal of Finance, American Finance Association, vol. 31(2), pages 351-367, May.
    6. Teija Laitinen & Maria Kankaanpaa, 1999. "Comparative analysis of failure prediction methods: the Finnish case," European Accounting Review, Taylor & Francis Journals, vol. 8(1), pages 67-92.
    7. Izan, H. Y., 1984. "Corporate distress in Australia," Journal of Banking & Finance, Elsevier, vol. 8(2), pages 303-320, June.
    8. Scott, James, 1981. "The probability of bankruptcy: A comparison of empirical predictions and theoretical models," Journal of Banking & Finance, Elsevier, vol. 5(3), pages 317-344, September.
    9. Thomas Eger, 2001. "Bankruptcy Regulations and the New German Insolvency Law from an Economic Point of View," European Journal of Law and Economics, Springer, vol. 11(1), pages 29-46, January.
    10. Bloomfield, Robert, 2008. "Discussion of "Annual report readability, current earnings, and earnings persistence"," Journal of Accounting and Economics, Elsevier, vol. 45(2-3), pages 248-252, August.
    11. Andreas Charitou & Evi Neophytou & Chris Charalambous, 2004. "Predicting corporate failure: empirical evidence for the UK," European Accounting Review, Taylor & Francis Journals, vol. 13(3), pages 465-497.
    12. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    13. Robert A. Jarrow & Stuart M. Turnbull, 2008. "Pricing Derivatives on Financial Securities Subject to Credit Risk," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 17, pages 377-409, World Scientific Publishing Co. Pte. Ltd..
    14. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    15. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
    16. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    17. Martin, Daniel, 1977. "Early warning of bank failure : A logit regression approach," Journal of Banking & Finance, Elsevier, vol. 1(3), pages 249-276, November.
    18. Brian J. Bushee & Ian D. Gow & Daniel J. Taylor, 2018. "Linguistic Complexity in Firm Disclosures: Obfuscation or Information?," Journal of Accounting Research, Wiley Blackwell, vol. 56(1), pages 85-121, March.
    19. Lori Holder-Webb & Jaffrey Cohen, 2007. "The Association between Disclosure, Distress, and Failure," Journal of Business Ethics, Springer, vol. 75(3), pages 301-314, October.
    20. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    21. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    22. Daniel Berg, 2007. "Bankruptcy prediction by generalized additive models," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 23(2), pages 129-143, March.
    23. Li, Feng, 2008. "Annual report readability, current earnings, and earnings persistence," Journal of Accounting and Economics, Elsevier, vol. 45(2-3), pages 221-247, August.
    24. Ruey-Ching Hwang & K. F. Cheng & Jack C. Lee, 2007. "A semiparametric method for predicting bankruptcy," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(5), pages 317-342.
    25. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
    26. Laurel A. Franzen & Kimberly J. Rodgers & Timothy T. Simin, 2007. "Measuring Distress Risk: The Effect of R&D Intensity," Journal of Finance, American Finance Association, vol. 62(6), pages 2931-2967, December.
    27. Tim Loughran & Bill Mcdonald, 2016. "Textual Analysis in Accounting and Finance: A Survey," Journal of Accounting Research, Wiley Blackwell, vol. 54(4), pages 1187-1230, September.
    28. Rada Dakovic & Claudia Czado & Daniel Berg, 2010. "Bankruptcy prediction in Norway: a comparison study," Applied Economics Letters, Taylor & Francis Journals, vol. 17(17), pages 1739-1746.
    29. Kristian D. Allee & Matthew D. Deangelis, 2015. "The Structure of Voluntary Disclosure Narratives: Evidence from Tone Dispersion," Journal of Accounting Research, Wiley Blackwell, vol. 53(2), pages 241-274, May.
    30. Luoma, M & Laitinen, EK, 1991. "Survival analysis as a tool for company failure prediction," Omega, Elsevier, vol. 19(6), pages 673-678.
    31. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    32. Lawrence, Alastair, 2013. "Individual investors and financial disclosure," Journal of Accounting and Economics, Elsevier, vol. 56(1), pages 130-147.
    33. Lang, M & Lundholm, R, 1993. "Cross-Sectional Determinants Of Analyst Ratings Of Corporate Disclosures," Journal of Accounting Research, Wiley Blackwell, vol. 31(2), pages 246-271.
    34. Sudheer Chava & Robert A. Jarrow, 2008. "Bankruptcy Prediction with Industry Effects," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 21, pages 517-549, World Scientific Publishing Co. Pte. Ltd..
    35. K. F. Cheng & C. K. Chu & Ruey-Ching Hwang, 2010. "Predicting bankruptcy using the discrete-time semiparametric hazard model," Quantitative Finance, Taylor & Francis Journals, vol. 10(9), pages 1055-1066.
    36. Lev, Baruch & Sunder, Shyam, 1979. "Methodological issues in the use of financial ratios," Journal of Accounting and Economics, Elsevier, vol. 1(3), pages 187-210, December.
    37. Lang, Mark & Stice-Lawrence, Lorien, 2015. "Textual analysis and international financial reporting: Large sample evidence," Journal of Accounting and Economics, Elsevier, vol. 60(2), pages 110-135.
    38. Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
    39. Christian Lohmann & Thorsten Ohliger, 2017. "Nonlinear Relationships and Their Effect on the Bankruptcy Prediction," Schmalenbach Business Review, Springer;Schmalenbach-Gesellschaft, vol. 18(3), pages 261-287, August.
    40. Bernd Engelmann & Robert Rauhmeier (ed.), 2011. "The Basel II Risk Parameters," Springer Books, Springer, number 978-3-642-16114-8, June.
    41. Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
    42. Stewart Jones, 2017. "Corporate bankruptcy prediction: a high dimensional analysis," Review of Accounting Studies, Springer, vol. 22(3), pages 1366-1422, September.
    43. Zahn Bozanic & Maya Thevenot, 2015. "Qualitative Disclosure and Changes in Sell†Side Financial Analysts' Information Environment," Contemporary Accounting Research, John Wiley & Sons, vol. 32(4), pages 1595-1616, December.
    44. Feng Li, 2010. "The Information Content of Forward‐Looking Statements in Corporate Filings—A Naïve Bayesian Machine Learning Approach," Journal of Accounting Research, Wiley Blackwell, vol. 48(5), pages 1049-1102, December.
    45. William F. Messier, Jr. & James V. Hansen, 1988. "Inducing Rules for Expert System Development: An Example Using Default and Bankruptcy Data," Management Science, INFORMS, vol. 34(12), pages 1403-1415, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lohmann, Christian & Möllenhoff, Steffen, 2023. "Dark premonitions: Pre-bankruptcy investor attention and behavior," Journal of Banking & Finance, Elsevier, vol. 151(C).
    2. Binh Thi Hai Le & Cong Van Nguyen, 2024. "Studying the impact of profitability, bankruptcy risk, and pandemic on narrative tone in annual reports in an emerging market in the East," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-16, December.
    3. Stephen P. Ferris & Jan Hanousek & Reza Houston, 2022. "Contractor default: Predictions, politics, and penalties in the procurement process," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 93(4), pages 1001-1039, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Lohmann & Thorsten Ohliger, 2017. "Nonlinear Relationships and Their Effect on the Bankruptcy Prediction," Schmalenbach Business Review, Springer;Schmalenbach-Gesellschaft, vol. 18(3), pages 261-287, August.
    2. Elsayed, Mohamed & Elshandidy, Tamer, 2020. "Do narrative-related disclosures predict corporate failure? Evidence from UK non-financial publicly quoted firms," International Review of Financial Analysis, Elsevier, vol. 71(C).
    3. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    4. Lohmann, Christian & Möllenhoff, Steffen, 2023. "Dark premonitions: Pre-bankruptcy investor attention and behavior," Journal of Banking & Finance, Elsevier, vol. 151(C).
    5. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    6. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    7. Zhou Lu & Zhuyao Zhuo, 2021. "Modelling of Chinese corporate bond default – A machine learning approach," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(5), pages 6147-6191, December.
    8. Hyeongjun Kim & Hoon Cho & Doojin Ryu, 2020. "Corporate Default Predictions Using Machine Learning: Literature Review," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
    9. Frank Ranganai Matenda & Mabutho Sibanda & Eriyoti Chikodza & Victor Gumbo, 2022. "Bankruptcy prediction for private firms in developing economies: a scoping review and guidance for future research," Management Review Quarterly, Springer, vol. 72(4), pages 927-966, December.
    10. Alessandra Amendola & Francesco Giordano & Maria Lucia Parrella & Marialuisa Restaino, 2017. "Variable selection in high‐dimensional regression: a nonparametric procedure for business failure prediction," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(4), pages 355-368, August.
    11. Mohammad Mahdi Mousavi & Jamal Ouenniche, 2018. "Multi-criteria ranking of corporate distress prediction models: empirical evaluation and methodological contributions," Annals of Operations Research, Springer, vol. 271(2), pages 853-886, December.
    12. Jackson, Richard H.G. & Wood, Anthony, 2013. "The performance of insolvency prediction and credit risk models in the UK: A comparative study," The British Accounting Review, Elsevier, vol. 45(3), pages 183-202.
    13. Bhanu Pratap Singh & Alok Kumar Mishra, 2016. "Re-estimation and comparisons of alternative accounting based bankruptcy prediction models for Indian companies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-28, December.
    14. Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
    15. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    16. Giesecke, Kay & Longstaff, Francis A. & Schaefer, Stephen & Strebulaev, Ilya, 2011. "Corporate bond default risk: A 150-year perspective," Journal of Financial Economics, Elsevier, vol. 102(2), pages 233-250.
    17. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    18. Kumar, Rahul & Deb, Soumya Guha & Mukherjee, Shubhadeep, 2020. "Do words reveal the latent truth? Identifying communication patterns of corporate losers," Journal of Behavioral and Experimental Finance, Elsevier, vol. 26(C).
    19. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    20. Scalzer, Rodrigo S. & Rodrigues, Adriano & Macedo, Marcelo Álvaro da S. & Wanke, Peter, 2019. "Financial distress in electricity distributors from the perspective of Brazilian regulation," Energy Policy, Elsevier, vol. 125(C), pages 250-259.

    More about this item

    Keywords

    Annual reports; Bankruptcy prediction; Linguistic tone; Management obfuscation hypothesis; Propensity score matching;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G24 - Financial Economics - - Financial Institutions and Services - - - Investment Banking; Venture Capital; Brokerage
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation
    • M41 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Accounting - - - Accounting

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jbecon:v:90:y:2020:i:1:d:10.1007_s11573-019-00938-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.