IDEAS home Printed from https://ideas.repec.org/p/zbw/fubsbe/201715.html
   My bibliography  Save this paper

The R package emdi for estimating and mapping regionally disaggregated indicators

Author

Listed:
  • Kreutzmann, Ann-Kristin
  • Pannier, Sören
  • Rojas-Perilla, Natalia
  • Schmid, Timo
  • Templ, Matthias
  • Tzavidis, Nikos

Abstract

The R package emdi offers a methodological and computational framework for the estimation of regionally disaggregated indicators using small area estimation methods and provides tools for assessing, processing and presenting the results. A range of indicators that includes the mean of the target variable, the quantiles of its distribution and complex, non-linear indicators or customized indicators can be estimated simultaneously using direct estimation and the empirical best predictor (EBP) approach (Molina and Rao 2010). In the application presented in this paper package emdi is used for estimating inequality indicators and the median of the income distributions for small areas in Austria. Because the EBP approach relies on the normality of the mixed model error terms, the user is further assisted by an automatic selection of data-driven transformation parameters. Estimating the uncertainty of small area estimates (using a mean squared error - MSE measure) is achieved by using both parametric bootstrap and semi-parametric wild bootstrap. The additional uncertainty due to the estimation of the transformation parameter is also captured in MSE estimation. The semi-parametric wild bootstrap further protects the user against departures from the assumptions of the mixed model in particular, those of the unit-level error term. The bootstrap schemes are facilitated by computationally effcient code that uses parallel computing. The package supports the users beyond the production of small area estimates. Firstly, tools are provided for exploring the structure of the data and for diagnostic analysis of the model assumptions. Secondly, tools that allow the spatial mapping of the estimates enable the user to create high quality visualizations. Thirdly, results and model summaries can be exported to Excel spreadsheets for further reporting purposes.

Suggested Citation

  • Kreutzmann, Ann-Kristin & Pannier, Sören & Rojas-Perilla, Natalia & Schmid, Timo & Templ, Matthias & Tzavidis, Nikos, 2017. "The R package emdi for estimating and mapping regionally disaggregated indicators," Discussion Papers 2017/15, Free University Berlin, School of Business & Economics.
  • Handle: RePEc:zbw:fubsbe:201715
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/162002/1/889899274.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alfons, Andreas & Templ, Matthias & Filzmoser, Peter, 2010. "An Object-Oriented Framework for Statistical Simulation: The R Package simFrame," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 37(i03).
    2. Flachaire, Emmanuel, 2005. "Bootstrapping heteroskedastic regression models: wild bootstrap vs. pairs bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 361-376, April.
    3. Alfons, Andreas & Templ, Matthias, 2013. "Estimation of Social Exclusion Indicators from Complex Surveys: The R Package laeken," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 54(i15).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kowarik, Alexander & Templ, Matthias, 2016. "Imputation with the R Package VIM," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 74(i07).
    2. Fabrizi, Enrico & Trivisano, Carlo, 2016. "Small area estimation of the Gini concentration coefficient," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 223-234.
    3. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    4. Carolina Laureti & Ariane Szafarz, 2016. "The price of deposit liquidity: banks versus microfinance institutions," Applied Economics Letters, Taylor & Francis Journals, vol. 23(17), pages 1244-1249, November.
    5. Elias Christopher J., 2015. "Percentile and Percentile-t Bootstrap Confidence Intervals: A Practical Comparison," Journal of Econometric Methods, De Gruyter, vol. 4(1), pages 153-161, January.
    6. Anna Murawska & Bartosz Mickiewicz & Małgorzata Zajdel & Małgorzata Michalcewicz-Kaniowska, 2020. "Multidimensional Analysis of the Relationship between Sustainable Living Conditions and Long and Good Health in the European Union Countries," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 716-735.
    7. Pötscher, Benedikt M. & Preinerstorfer, David, 2023. "How Reliable Are Bootstrap-Based Heteroskedasticity Robust Tests?," Econometric Theory, Cambridge University Press, vol. 39(4), pages 789-847, August.
    8. Bravo, Francesco & Crudu, Federico, 2012. "Efficient bootstrap with weakly dependent processes," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3444-3458.
    9. Cyrus J. DiCiccio & Joseph P. Romano & Michael Wolf, 2016. "Improving weighted least squares inference," ECON - Working Papers 232, Department of Economics - University of Zurich, revised Nov 2017.
    10. Romano, Joseph P. & Wolf, Michael, 2017. "Resurrecting weighted least squares," Journal of Econometrics, Elsevier, vol. 197(1), pages 1-19.
    11. Fallesen, Peter & Geerdsen, Lars Pico & Imai, Susumu & Tranæs, Torben, 2018. "The effect of active labor market policies on crime: Incapacitation and program effects," Labour Economics, Elsevier, vol. 52(C), pages 263-286.
    12. Ermanno Catullo & Antonio Palestrini & Ruggero Grilli & Mauro Gallegati, 2018. "Early warning indicators and macro-prudential policies: a credit network agent based model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(1), pages 81-115, April.
    13. Badi H. Baltagi & Chihwa Kao & Long Liu, 2013. "The Estimation and Testing of a Linear Regression with Near Unit Root in the Spatial Autoregressive Error Term," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(3), pages 241-270, September.
    14. Torben Klarl, 2014. "Is Spatial Bootstrapping A Panacea For Valid Inference?," Journal of Regional Science, Wiley Blackwell, vol. 54(2), pages 304-312, March.
    15. Olivier Armantier, 2006. "Estimates of Own Lethal Risks and Anchoring Effects," Journal of Risk and Uncertainty, Springer, vol. 32(1), pages 37-56, January.
    16. Lee, Taewook, 2016. "Wild bootstrap Ljung–Box test for cross correlations of multivariate time series," Economics Letters, Elsevier, vol. 147(C), pages 59-62.
    17. Oc, Burak & Daniels, Michael A. & Diefendorff, James M. & Bashshur, Michael R. & Greguras, Gary J., 2020. "Humility breeds authenticity: How authentic leader humility shapes follower vulnerability and felt authenticity," Organizational Behavior and Human Decision Processes, Elsevier, vol. 158(C), pages 112-125.
    18. Marchetti Stefano & Tzavidis Nikos, 2021. "Robust Estimation of the Theil Index and the Gini Coeffient for Small Areas," Journal of Official Statistics, Sciendo, vol. 37(4), pages 955-979, December.
    19. Yang He & Otávio Bartalotti, 2020. "Wild bootstrap for fuzzy regression discontinuity designs: obtaining robust bias-corrected confidence intervals," The Econometrics Journal, Royal Economic Society, vol. 23(2), pages 211-231.
    20. Nicolas DEBARSY & Cem ERTUR, 2016. "Interaction matrix selection in spatial econometrics with an application to growth theory," LEO Working Papers / DR LEO 2172, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.

    More about this item

    Keywords

    offcial statistics; parallel computation; small area estimation; visualization;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:fubsbe:201715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/fwfubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.