IDEAS home Printed from https://ideas.repec.org/p/zbw/euvwdp/361.html
   My bibliography  Save this paper

Obtaining superior wind power predictions from a periodic and heteroscedastic Wind Power Prediction Tool

Author

Listed:
  • Ambach, Daniel
  • Croonenbroeck, Carsten

Abstract

The Wind Power Prediction Tool (WPPT) has successfully been used for accurate wind power forecasts in the short to medium term scenario (up to 12 hours ahead). Since its development about a decade ago, a lot of additional stochastic modeling has been applied to the interdependency of wind power and wind speed. We improve the model in three ways: First, we replace the rather simple Fourier series of the basic model by more general and flexible periodic Basis splines (Bsplines). Second, we model conditional heteroscedasticity by a threshold-GARCH (TGARCH) model, one aspect that is entirely left out by the underlying model. Third, we evaluate several distributional forms of the model's error term. While the original WPPT assumes gaussian errors only, we also investigate whether the errors may follow a Student's t-distribution as well as a skew t-distribution. In this article we show that our periodic WPPT-CH model is able to improve forecasts' accuracy significantly, when compared to the plain WPPT model.

Suggested Citation

  • Ambach, Daniel & Croonenbroeck, Carsten, 2014. "Obtaining superior wind power predictions from a periodic and heteroscedastic Wind Power Prediction Tool," Discussion Papers 361, European University Viadrina Frankfurt (Oder), Department of Business Administration and Economics.
  • Handle: RePEc:zbw:euvwdp:361
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/103421/1/797798323.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lei, Ma & Shiyan, Luan & Chuanwen, Jiang & Hongling, Liu & Yan, Zhang, 2009. "A review on the forecasting of wind speed and generated power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 915-920, May.
    2. Florian Ziel & Rick Steinert & Sven Husmann, 2014. "Efficient Modeling and Forecasting of the Electricity Spot Price," Papers 1402.7027, arXiv.org, revised Oct 2014.
    3. Rabemananjara, R & Zakoian, J M, 1993. "Threshold Arch Models and Asymmetries in Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(1), pages 31-49, Jan.-Marc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. García, Irene & Huo, Stella & Prado, Raquel & Bravo, Lelys, 2020. "Dynamic Bayesian temporal modeling and forecasting of short-term wind measurements," Renewable Energy, Elsevier, vol. 161(C), pages 55-64.
    2. Mika Meitz & Pentti Saikkonen, 2008. "Stability of nonlinear AR‐GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(3), pages 453-475, May.
    3. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    4. Gonçalves, Esmeralda & Leite, Joana & Mendes-Lopes, Nazaré, 2009. "A mathematical approach to detect the Taylor property in TARCH processes," Statistics & Probability Letters, Elsevier, vol. 79(5), pages 602-610, March.
    5. Méndez-Gordillo, Alma Rosa & Cadenas, Erasmo, 2021. "Wind speed forecasting by the extraction of the multifractal patterns of time series through the multiplicative cascade technique," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    6. Onour, Ibrahim, 2008. "Forward-Looking Beta Estimates:Evidence from an Emerging Market," MPRA Paper 14992, University Library of Munich, Germany.
    7. Wasilewski, J. & Baczynski, D., 2017. "Short-term electric energy production forecasting at wind power plants in pareto-optimality context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 177-187.
    8. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    9. Marcelo Cunha Medeiros & Alvaro Veiga, 2004. "Modelling multiple regimes in financial volatility with a flexible coefficient GARCH model," Textos para discussão 486, Department of Economics PUC-Rio (Brazil).
    10. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    11. Francq, Christian & Zakoian, Jean-Michel, 2013. "Inference in non stationary asymmetric garch models," MPRA Paper 44901, University Library of Munich, Germany.
    12. Tamal Datta Chaudhuri & Indranil Ghosh, 2016. "Artificial Neural Network and Time Series Modeling Based Approach to Forecasting the Exchange Rate in a Multivariate Framework," Papers 1607.02093, arXiv.org.
    13. Výrost, Tomáš & Baumöhl, Eduard, 2009. "Asymmetric GARCH and the financial crisis: a preliminary study," MPRA Paper 27939, University Library of Munich, Germany.
    14. Tzu-Yi Yang & Yu-Tai Yang, 2015. "A Study on the Asymmetry of the News Aspect of the Stock Market: Evidence from Three Institutional Investors in the Taiwan Stock Market," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 62(3), pages 361-383, June.
    15. Teräsvirta, Timo, 2006. "An introduction to univariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 646, Stockholm School of Economics.
    16. Ibrahim Onour, "undated". "Exploring Stability of Systematic Risk: Sectoral Portfolio Analysis," API-Working Paper Series 1002, Arab Planning Institute - Kuwait, Information Center.
    17. Daniel Ambach & Robert Garthoff, 2016. "Vorhersagen der Windgeschwindigkeit und Windenergie in Deutschland," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 10(1), pages 15-36, February.
    18. Fukuda, Shin-ichi, 2012. "Market-specific and currency-specific risk during the global financial crisis: Evidence from the interbank markets in Tokyo and London," Journal of Banking & Finance, Elsevier, vol. 36(12), pages 3185-3196.
    19. Boubacar Maïnassara, Y. & Kadmiri, O. & Saussereau, B., 2022. "Estimation of multivariate asymmetric power GARCH models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    20. Francesco Audrino & Fabio Trojani, 2006. "Estimating and predicting multivariate volatility thresholds in global stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 345-369, April.
    21. Liu, Min & Qin, Jianjun & Lu, Da-Gang & Zhang, Wei-Heng & Zhu, Jiang-Sheng & Faber, Michael Havbro, 2022. "Towards resilience of offshore wind farms: A framework and application to asset integrity management," Applied Energy, Elsevier, vol. 322(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:euvwdp:361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/fwffode.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.