IDEAS home Printed from https://ideas.repec.org/p/zbw/bclgwp/6.html
   My bibliography  Save this paper

Cooperative liner shipping network design by means of a combinatorial auction

Author

Listed:
  • Buer, Tobias
  • Haass, Rasmus

Abstract

Cooperation in the ocean liner shipping industry has always been important to improve liner shipping networks (LSN's). As tight cooperations like alliances are challenged by antitrust laws, looser forms of cooperation among liner carriers might become a reasonable way to increase efficiency of LSN's. Our goal is to facilitate a loose form of cooperation among liner carriers. Therefore, we introduce a coordination mechanism for designing a collaborative LSN based on a multi round combinatorial auction. Via the auction, carriers exchange demand triplets, i.e. orders which describe the transport of containers between ports. A standard network design problem which includes ship scheduling and cargo routing decisions is used as isolated network design problem of an individual carrier. A carrier has to solve this isolated problem repeatedly during the auction so that the carrier is able to decide which demand triplets to sell, on which demand triplets to bid, and what prices to charge. To solve these problems we propose a variable neighborhood search based matheuristic. The matheuristic addresses the isolated planning problem in four phases (construct ship cycles, modify cycles, determine container flow, and reallocate ships to cycles). Our computational experiments on a set of 56 synthetic test instances suggest that the introduced combinatorial auction increases profits on average compared to isolated planning significantly by four percent. The more diverse the original assignment of demand triplets and ships to carriers is, the higher the potential for collaboration; for 18 diverse instances, the profits increase on average by ten percent.

Suggested Citation

  • Buer, Tobias & Haass, Rasmus, 2016. "Cooperative liner shipping network design by means of a combinatorial auction," Bremen Computational Logistics Group Working Papers 6, University of Bremen, Computational Logistics Junior Research Group.
  • Handle: RePEc:zbw:bclgwp:6
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/145380/1/866679545.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Richa Agarwal & Özlem Ergun, 2008. "Ship Scheduling and Network Design for Cargo Routing in Liner Shipping," Transportation Science, INFORMS, vol. 42(2), pages 175-196, May.
    2. Richa Agarwal & Özlem Ergun, 2010. "Network Design and Allocation Mechanisms for Carrier Alliances in Liner Shipping," Operations Research, INFORMS, vol. 58(6), pages 1726-1742, December.
    3. Berit D. Brouer & J. Fernando Alvarez & Christian E. M. Plum & David Pisinger & Mikkel M. Sigurd, 2014. "A Base Integer Programming Model and Benchmark Suite for Liner-Shipping Network Design," Transportation Science, INFORMS, vol. 48(2), pages 281-312, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Jianfeng & Sun, Zhuo & Zhang, Fangjun, 2016. "Measuring the perceived container leasing prices in liner shipping network design with empty container repositioning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 123-140.
    2. Tobias Buer & Rasmus Haass, 2018. "Cooperative liner shipping network design by means of a combinatorial auction," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 686-711, December.
    3. Zheng, Jianfeng & Meng, Qiang & Sun, Zhuo, 2015. "Liner hub-and-spoke shipping network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 32-48.
    4. Nguyen Khoi Tran & Hans-Dietrich Haasis & Tobias Buer, 2017. "Container shipping route design incorporating the costs of shipping, inland/feeder transport, inventory and CO2 emission," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(4), pages 667-694, December.
    5. Milan Janić, 2018. "Multidimensional examination of the performances of a liner shipping network: trunk line/route operated by conventional (Panamax Max) and mega (ULC - ultra large container) ships," Journal of Shipping and Trade, Springer, vol. 3(1), pages 1-35, December.
    6. Manuel Herrera & Per J. Agrell & Casiano Manrique-de-Lara-Peñate & Lourdes Trujillo, 2017. "Vessel capacity restrictions in the fleet deployment problem: an application to the Panama Canal," Annals of Operations Research, Springer, vol. 253(2), pages 845-869, June.
    7. Gang Du & Chuanwang Sun & Jinxian Weng, 2016. "Liner Shipping Fleet Deployment with Sustainable Collaborative Transportation," Sustainability, MDPI, vol. 8(2), pages 1-15, February.
    8. Zheng, Jianfeng & Qi, Jingwen & Sun, Zhuo & Li, Feng, 2018. "Community structure based global hub location problem in liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 1-19.
    9. Lee, Chung-Yee & Lee, Hau L. & Zhang, Jiheng, 2015. "The impact of slow ocean steaming on delivery reliability and fuel consumption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 176-190.
    10. Gianfranco FANCELLO & Patrizia SERRA & Simona MANCINI, 2019. "A Network Design Optimization Problem For Ro-Ro Freight Transport In The Tyrrhenian Area," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 14(4), pages 63-76, December.
    11. Lee, Chung-Yee & Song, Dong-Ping, 2017. "Ocean container transport in global supply chains: Overview and research opportunities," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 442-474.
    12. Moussawi-Haidar, Lama & Nasr, Walid & Jalloul, Maya, 2021. "Standardized cargo network revenue management with dual channels under stochastic and time-dependent demand," European Journal of Operational Research, Elsevier, vol. 295(1), pages 275-291.
    13. Meng, Qiang & Lee, Chung-Yee, 2016. "Liner container assignment model with transit-time-sensitive container shipment demand and its applicationsAuthor-Name: Wang, Shuaian," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 135-155.
    14. Jianfeng Zheng & Ziyou Gao & Dong Yang & Zhuo Sun, 2015. "Network Design and Capacity Exchange for Liner Alliances with Fixed and Variable Container Demands," Transportation Science, INFORMS, vol. 49(4), pages 886-899, November.
    15. Reinhardt, Line Blander & Pisinger, David & Sigurd, Mikkel M. & Ahmt, Jonas, 2020. "Speed optimizations for liner networks with business constraints," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1127-1140.
    16. Angeloudis, Panagiotis & Greco, Luciano & Bell, Michael G.H., 2016. "Strategic maritime container service design in oligopolistic markets," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 22-37.
    17. Nguyen Tran & Hans-Dietrich Haasis, 2014. "Empirical analysis of the container liner shipping network on the East-West corridor (1995–2011)," Netnomics, Springer, vol. 15(3), pages 121-153, November.
    18. Magnus Bolstad Holm & Carl Axel Benjamin Medbøen & Kjetil Fagerholt & Peter Schütz, 2019. "Shortsea liner network design with transhipments at sea: a case study from Western Norway," Flexible Services and Manufacturing Journal, Springer, vol. 31(3), pages 598-619, September.
    19. Wang, Yadong & Wang, Shuaian, 2021. "Deploying, scheduling, and sequencing heterogeneous vessels in a liner container shipping route," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    20. Zhijia Tan & Yadong Wang & Qiang Meng & Zhixue Liu, 2018. "Joint Ship Schedule Design and Sailing Speed Optimization for a Single Inland Shipping Service with Uncertain Dam Transit Time," Service Science, INFORMS, vol. 52(6), pages 1570-1588, December.

    More about this item

    Keywords

    liner shipping; network design; combinatorial auction; bundle bidding; collaborative planning; variable neighborhood search;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:bclgwp:6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/fwbrede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.