IDEAS home Printed from https://ideas.repec.org/p/yor/yorken/10-22.html
   My bibliography  Save this paper

Robust Nonnested Testing for Ordinary Least Squares Regression When Some of the Regressors are Lagged Dependent Variables

Author

Listed:
  • Leslie G. Godrey

Abstract

The problem of testing nonnested regression models that include lagged values of the dependent variable as regressors is discussed. It is argued that it is essential to test for error autocorrelation if ordinary least squares and the associated J and F tests are to be used. A heteroskedasticity-robust joint test against a combination of the artificial alternatives used for autocorrelation and nonnested hypothesis tests is proposed. Monte Carlo results indicate that implementing this joint test using a wild bootstrap method leads to a well-behaved procedure and gives better control of finite sample significance levels than asymptotic critical values.

Suggested Citation

  • Leslie G. Godrey, 2010. "Robust Nonnested Testing for Ordinary Least Squares Regression When Some of the Regressors are Lagged Dependent Variables," Discussion Papers 10/22, Department of Economics, University of York.
  • Handle: RePEc:yor:yorken:10/22
    as

    Download full text from publisher

    File URL: https://www.york.ac.uk/media/economics/documents/discussionpapers/2010/1022.pdf
    File Function: Main text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cribari-Neto, Francisco, 2004. "Asymptotic inference under heteroskedasticity of unknown form," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 215-233, March.
    2. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Donald W. K. Andrews & Patrik Guggenberger, 2014. "A Conditional-Heteroskedasticity-Robust Confidence Interval for the Autoregressive Parameter," The Review of Economics and Statistics, MIT Press, vol. 96(2), pages 376-381, May.
    2. Benoît Le Maux & Federica Minardy & Charlotte Magalhaes, 2011. "Determinants of Electoral Outcomes: A simple Test of Meltzer and Richard's Hypothesis," Economics Working Paper from Condorcet Center for political Economy at CREM-CNRS 2011-03-ccr, Condorcet Center for political Economy.
    3. Daiki Maki, 2015. "Wild bootstrap tests for unit root in ESTAR models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(3), pages 475-490, September.
    4. Papapostolou, Nikos C. & Pouliasis, Panos K. & Nomikos, Nikos K. & Kyriakou, Ioannis, 2016. "Shipping investor sentiment and international stock return predictability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 81-94.
    5. Rüth, Sebastian K., 2018. "Fiscal stimulus and systematic monetary policy: Postwar evidence for the United States," Economics Letters, Elsevier, vol. 173(C), pages 92-96.
    6. Jacks, David S. & Stuermer, Martin, 2020. "What drives commodity price booms and busts?," Energy Economics, Elsevier, vol. 85(C).
    7. repec:ags:aaea22:335733 is not listed on IDEAS
    8. Andrea Bastianin & Alessandro Lanza & Matteo Manera, 2018. "Economic impacts of El Niño southern oscillation: evidence from the Colombian coffee market," Agricultural Economics, International Association of Agricultural Economists, vol. 49(5), pages 623-633, September.
    9. Christiane Baumeister & Lutz Kilian, 2014. "Do oil price increases cause higher food prices? [Biofuels, binding constraints, and agricultural commodity price volatility]," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 29(80), pages 691-747.
    10. Eric Beutner & Julia Schaumburg & Barend Spanjers, 2024. "Bootstrapping GARCH Models Under Dependent Innovations," Tinbergen Institute Discussion Papers 24-008/III, Tinbergen Institute.
    11. Xu, Ke-Li, 2012. "Robustifying multivariate trend tests to nonstationary volatility," Journal of Econometrics, Elsevier, vol. 169(2), pages 147-154.
    12. Nikolaos Kourogenis, 2015. "Polynomial Trends, Nonstationary Volatility and the Eicker-White Asymptotic Variance Estimator," Economics Bulletin, AccessEcon, vol. 35(3), pages 1675-1680.
    13. Ricardo Lagos & Shengxing Zhang, 2020. "Turnover Liquidity and the Transmission of Monetary Policy," American Economic Review, American Economic Association, vol. 110(6), pages 1635-1672, June.
    14. Kang, Wensheng & Ratti, Ronald A., 2013. "Oil shocks, policy uncertainty and stock market return," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 26(C), pages 305-318.
    15. Emi Nakamura & Jón Steinsson, 2018. "Identification in Macroeconomics," Journal of Economic Perspectives, American Economic Association, vol. 32(3), pages 59-86, Summer.
    16. Ye, Haichun & Ashley, Richard & Guerard, John, 2015. "Comparing the effectiveness of traditional vs. mechanized identification methods in post-sample forecasting for a macroeconomic Granger causality analysis," International Journal of Forecasting, Elsevier, vol. 31(2), pages 488-500.
    17. Chris D. Orme & Takashi Yamagata, 2014. "A Heteroskedasticity-Robust F -Test Statistic for Individual Effects," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 431-471, August.
    18. Hamidi Sahneh, Mehdi, 2015. "Are the shocks obtained from SVAR fundamental?," MPRA Paper 65126, University Library of Munich, Germany.
    19. Helmut Lütkepohl, 2013. "Vector autoregressive models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 6, pages 139-164, Edward Elgar Publishing.
    20. Gavriilidis, Konstantinos & Kambouroudis, Dimos S. & Tsakou, Katerina & Tsouknidis, Dimitris A., 2018. "Volatility forecasting across tanker freight rates: The role of oil price shocks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 376-391.
    21. Adrian Pagan & Hashem Pesaran, 2007. "Econometric Analysis of Structural Systems with Permanent and Transitory Shocks. Working paper #7," NCER Working Paper Series 7, National Centre for Econometric Research.

    More about this item

    Keywords

    nonnested models; heteroskedasticity-robust; wild bootstrap;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:yor:yorken:10/22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Paul Hodgson (email available below). General contact details of provider: https://edirc.repec.org/data/deyoruk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.