IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpfi/0311012.html
   My bibliography  Save this paper

American Option Pricing with Transaction Costs

Author

Listed:
  • Valeri Zakamouline

    (Norwegian School of Economics & Business Administration)

Abstract

In this paper we examine the problem of finding investors' reservation option prices and corresponding early exercise policies of American- style options in the market with proportional transaction costs using the utility based approach proposed by Davis and Zariphopoulou (1995). We present a model, where investors have a CARA utility, and derive some properties of reservation option prices. We discuss the numerical algorithm and propose a new formulation of the problem in terms of quasi-variational HJB inequalities. Based on our formulation, we suggest original discretization schemes for computing reservation prices of American-style option. The discretization schemes are then implemented for computing prices of American put and call options. We examine the effects on the reservation option prices and the corresponding early exercise policies of varying the investor's ARA and the level of transaction costs. We find that in the market with transaction costs the holder of an American-style option exercises this option earlier as compared to the case with no transaction costs. This phenomenon concerns both put and call options written on a non-dividend paying stock. The higher level the transaction costs is, or the higher risk avers the option holder is, the earlier an American option is exercised.

Suggested Citation

  • Valeri Zakamouline, 2003. "American Option Pricing with Transaction Costs," Finance 0311012, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpfi:0311012
    Note: Type of Document - pdf; prepared on WinXP; pages: 51; figures: 11
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/fin/papers/0311/0311012.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    2. M. H. A. Davis & A. R. Norman, 1990. "Portfolio Selection with Transaction Costs," Mathematics of Operations Research, INFORMS, vol. 15(4), pages 676-713, November.
    3. He, Hua, 1990. "Convergence from Discrete- to Continuous-Time Contingent Claims Prices," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 523-546.
    4. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    5. A. E. Whalley & P. Wilmott, 1997. "An Asymptotic Analysis of an Optimal Hedging Model for Option Pricing with Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 7(3), pages 307-324, July.
    6. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valeri Zakamouline, 2004. "A Unified Approach to Portfolio Optimization with Linear Transaction Costs," GE, Growth, Math methods 0404003, University Library of Munich, Germany, revised 28 Apr 2004.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valeri Zakamouline, 2003. "European Option Pricing and Hedging with both Fixed and Proportional Transaction Costs," Finance 0311009, University Library of Munich, Germany.
    2. Zakamouline, Valeri I., 2006. "European option pricing and hedging with both fixed and proportional transaction costs," Journal of Economic Dynamics and Control, Elsevier, vol. 30(1), pages 1-25, January.
    3. repec:dau:papers:123456789/5374 is not listed on IDEAS
    4. Monoyios, Michael, 2004. "Option pricing with transaction costs using a Markov chain approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(5), pages 889-913, February.
    5. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    6. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    7. Valeri Zakamouline, 2005. "A unified approach to portfolio optimization with linear transaction costs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 62(2), pages 319-343, November.
    8. Leisen, Dietmar P. J., 1999. "The random-time binomial model," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1355-1386, September.
    9. Carlos de Lamare Bastian-Pinto & Alexandre Paula Silva Ramos & Luiz de Magalhães Ozorio & Luiz Eduardo Teixeira Brandão, 2015. "Uncertainty and Flexibility in the Brazilian Beef Livestock Sector: the Value of the Confinement Option," Brazilian Business Review, Fucape Business School, vol. 12(6), pages 100-120, November.
    10. Moyen, Nathalie & Slade, Margaret & Uppal, Raman, 1996. "Valuing risk and flexibility : A comparison of methods," Resources Policy, Elsevier, vol. 22(1-2), pages 63-74.
    11. Hahn, Warren J. & Dyer, James S., 2008. "Discrete time modeling of mean-reverting stochastic processes for real option valuation," European Journal of Operational Research, Elsevier, vol. 184(2), pages 534-548, January.
    12. Mark Broadie & Jérôme Detemple, 1996. "Recent Advances in Numerical Methods for Pricing Derivative Securities," CIRANO Working Papers 96s-17, CIRANO.
    13. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 2001. "When Is Time Continuous?," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II), chapter 3, pages 71-102, World Scientific Publishing Co. Pte. Ltd..
    14. Valeri Zakamouline, 2004. "A Unified Approach to Portfolio Optimization with Linear Transaction Costs," GE, Growth, Math methods 0404003, University Library of Munich, Germany, revised 28 Apr 2004.
    15. Damgaard, Anders, 2006. "Computation of reservation prices of options with proportional transaction costs," Journal of Economic Dynamics and Control, Elsevier, vol. 30(3), pages 415-444, March.
    16. Fischer, Georg, 2019. "How dynamic hedging affects stock price movements: Evidence from German option and certificate markets," Passauer Diskussionspapiere, Betriebswirtschaftliche Reihe B-35-19, University of Passau, Faculty of Business and Economics.
    17. Damgaard, Anders, 2003. "Utility based option evaluation with proportional transaction costs," Journal of Economic Dynamics and Control, Elsevier, vol. 27(4), pages 667-700, February.
    18. Cuny, Charles J. & Jorion, Philippe, 1995. "Valuing executive stock options with endogenous departure," Journal of Accounting and Economics, Elsevier, vol. 20(2), pages 193-205, September.
    19. Yuan Hu & W. Brent Lindquist & Svetlozar T. Rachev & Frank J. Fabozzi, 2023. "Option pricing using a skew random walk pricing tree," Papers 2303.17014, arXiv.org.
    20. Warren J. Hahn & James S. Dyer, 2011. "A Discrete Time Approach for Modeling Two-Factor Mean-Reverting Stochastic Processes," Decision Analysis, INFORMS, vol. 8(3), pages 220-232, September.
    21. Jimmy E. Hilliard, 2014. "Robust binomial lattices for univariate and multivariate applications: choosing probabilities to match local densities," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 101-110, January.

    More about this item

    Keywords

    option pricing; transaction costs; stochastic control; optimal stopping; Markov chain approximation;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:0311012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.