IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpge/0404003.html
   My bibliography  Save this paper

A Unified Approach to Portfolio Optimization with Linear Transaction Costs

Author

Listed:
  • Valeri Zakamouline

    (Bodoe Graduate School of Business)

Abstract

In this paper we study the continuous time optimal portfolio selection problem for an investor with a finite horizon who maximizes expected utility of terminal wealth and faces transaction costs in the capital market. It is well known that, depending on a particular structure of transaction costs, such a problem is formulated and solved within either stochastic singular control or stochastic impulse control framework. In this paper we propose a unified framework, which generalizes the contemporary approaches and is capable to deal with any problem where transaction costs are a linear/piecewise-linear function of the volume of trade. We also discuss some methods for solving numerically the problem within our unified framework.

Suggested Citation

  • Valeri Zakamouline, 2004. "A Unified Approach to Portfolio Optimization with Linear Transaction Costs," GE, Growth, Math methods 0404003, University Library of Munich, Germany, revised 28 Apr 2004.
  • Handle: RePEc:wpa:wuwpge:0404003
    Note: Type of Document - pdf; pages: 36
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/ge/papers/0404/0404003.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ralf Korn, 1999. "Some applications of impulse control in mathematical finance," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 50(3), pages 493-518, December.
    2. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    3. Framstad, Nils Chr. & Oksendal, Bernt & Sulem, Agnes, 2001. "Optimal consumption and portfolio in a jump diffusion market with proportional transaction costs," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 233-257, April.
    4. M. H. A. Davis & A. R. Norman, 1990. "Portfolio Selection with Transaction Costs," Mathematics of Operations Research, INFORMS, vol. 15(4), pages 676-713, November.
    5. He, Hua, 1990. "Convergence from Discrete- to Continuous-Time Contingent Claims Prices," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 523-546.
    6. Jerome F. Eastham & Kevin J. Hastings, 1988. "Optimal Impulse Control of Portfolios," Mathematics of Operations Research, INFORMS, vol. 13(4), pages 588-605, November.
    7. C. Atkinson & P. Wilmott, 1995. "Portfolio Management With Transaction Costs: An Asymptotic Analysis Of The Morton And Pliska Model," Mathematical Finance, Wiley Blackwell, vol. 5(4), pages 357-367, October.
    8. Andriy Demchuk, 2002. "Portfolio Optimization with Concave Transaction Costs," FAME Research Paper Series rp103, International Center for Financial Asset Management and Engineering.
    9. Halil Mete Soner & Guy Barles, 1998. "Option pricing with transaction costs and a nonlinear Black-Scholes equation," Finance and Stochastics, Springer, vol. 2(4), pages 369-397.
    10. A. E. Whalley & P. Wilmott, 1997. "An Asymptotic Analysis of an Optimal Hedging Model for Option Pricing with Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 7(3), pages 307-324, July.
    11. Karel Janeček & Steven Shreve, 2004. "Asymptotic analysis for optimal investment and consumption with transaction costs," Finance and Stochastics, Springer, vol. 8(2), pages 181-206, May.
    12. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    13. Valeri Zakamouline, 2003. "American Option Pricing with Transaction Costs," Finance 0311012, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valeri Zakamouline, 2005. "A unified approach to portfolio optimization with linear transaction costs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 62(2), pages 319-343, November.
    2. Alev{s} v{C}ern'y & Stephan Denkl & Jan Kallsen, 2013. "Hedging in L\'evy Models and the Time Step Equivalent of Jumps," Papers 1309.7833, arXiv.org, revised Jul 2017.
    3. Xinfu Chen & Min Dai & Wei Jiang & Cong Qin, 2022. "Asymptotic analysis of long‐term investment with two illiquid and correlated assets," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1133-1169, October.
    4. Johannes Muhle-Karbe & Max Reppen & H. Mete Soner, 2016. "A Primer on Portfolio Choice with Small Transaction Costs," Papers 1612.01302, arXiv.org, revised May 2017.
    5. Valeri Zakamouline, 2003. "European Option Pricing and Hedging with both Fixed and Proportional Transaction Costs," Finance 0311009, University Library of Munich, Germany.
    6. Albert Altarovici & Max Reppen & H. Mete Soner, 2016. "Optimal Consumption and Investment with Fixed and Proportional Transaction Costs," Papers 1610.03958, arXiv.org.
    7. Albert Altarovici & Johannes Muhle-Karbe & H. Mete Soner, 2013. "Asymptotics for Fixed Transaction Costs," Papers 1306.2802, arXiv.org, revised Oct 2013.
    8. Albert Altarovici & Johannes Muhle-Karbe & Halil Soner, 2015. "Asymptotics for fixed transaction costs," Finance and Stochastics, Springer, vol. 19(2), pages 363-414, April.
    9. Jan Kallsen & Johannes Muhle-Karbe, 2013. "The General Structure of Optimal Investment and Consumption with Small Transaction Costs," Papers 1303.3148, arXiv.org, revised May 2015.
    10. Dai, Min & Wang, Hefei & Yang, Zhou, 2012. "Leverage management in a bull–bear switching market," Journal of Economic Dynamics and Control, Elsevier, vol. 36(10), pages 1585-1599.
    11. Bruno Bouchard & Ludovic Moreau & Mete H. Soner, 2016. "Hedging under an expected loss constraint with small transaction costs," Post-Print hal-00863562, HAL.
    12. repec:dau:papers:123456789/5374 is not listed on IDEAS
    13. Jouini, Elyes, 2001. "Arbitrage and control problems in finance: A presentation," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 167-183, April.
    14. Monoyios, Michael, 2004. "Option pricing with transaction costs using a Markov chain approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(5), pages 889-913, February.
    15. Yaroslav Melnyk & Frank Thomas Seifried, 2018. "Small†cost asymptotics for long†term growth rates in incomplete markets," Mathematical Finance, Wiley Blackwell, vol. 28(2), pages 668-711, April.
    16. Maxim Bichuch, 2011. "Pricing a Contingent Claim Liability with Transaction Costs Using Asymptotic Analysis for Optimal Investment," Papers 1112.3012, arXiv.org.
    17. Bruno Bouchard & Ludovic Moreau & Mete H. Soner, 2013. "Hedging under an expected loss constraint with small transaction costs," Papers 1309.4916, arXiv.org, revised Sep 2014.
    18. Florent Gallien & Serge Kassibrakis & Semyon Malamud, 2018. "Hedge or Rebalance: Optimal Risk Management with Transaction Costs," Risks, MDPI, vol. 6(4), pages 1-14, October.
    19. Maxim Bichuch, 2014. "Pricing a contingent claim liability with transaction costs using asymptotic analysis for optimal investment," Finance and Stochastics, Springer, vol. 18(3), pages 651-694, July.
    20. repec:dau:papers:123456789/5590 is not listed on IDEAS
    21. Valeri Zakamouline, 2003. "American Option Pricing with Transaction Costs," Finance 0311012, University Library of Munich, Germany.

    More about this item

    Keywords

    portfolio choice; transaction costs; stochastic singular control; stochastic impulse control; computational methods;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpge:0404003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.