IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpfi/0311009.html
   My bibliography  Save this paper

European Option Pricing and Hedging with both Fixed and Proportional Transaction Costs

Author

Listed:
  • Valeri Zakamouline

    (Norwegian School of Economics & Business Administration)

Abstract

In this paper we extend the utility based option pricing and hedging approach, pioneered by Hodges and Neuberger (1989) and further developed by Davis, Panas and Zariphopoulou (1993), for the market where each transaction has a fixed cost component. We present a model, where investors have a CARA utility, and derive some properties of reservation option prices. We suggest and implement discretization schemes for computing the reservation option prices. The numerical results of option pricing and hedging are presented for the case of European call options and the investors with different levels of ARA. We also try to reconcile our findings with such empirical pricing bias as the volatility smile.

Suggested Citation

  • Valeri Zakamouline, 2003. "European Option Pricing and Hedging with both Fixed and Proportional Transaction Costs," Finance 0311009, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpfi:0311009
    Note: Type of Document - pdf; prepared on WinXP; pages: 43; figures: 6
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/fin/papers/0311/0311009.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    2. Benjamin Mohamed, 1994. "Simulations of transaction costs and optimal rehedging," Applied Mathematical Finance, Taylor & Francis Journals, vol. 1(1), pages 49-62.
    3. (*), Thaleia Zariphopoulou & George M. Constantinides, 1999. "Bounds on prices of contingent claims in an intertemporal economy with proportional transaction costs and general preferences," Finance and Stochastics, Springer, vol. 3(3), pages 345-369.
    4. M. H. A. Davis & A. R. Norman, 1990. "Portfolio Selection with Transaction Costs," Mathematics of Operations Research, INFORMS, vol. 15(4), pages 676-713, November.
    5. He, Hua, 1990. "Convergence from Discrete- to Continuous-Time Contingent Claims Prices," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 523-546.
    6. Dermody, Jaime Cuevas & Prisman, Eliezer Z., 1993. "No Arbitrage and Valuation in Markets with Realistic Transaction Costs," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(1), pages 65-80, March.
    7. Jerome F. Eastham & Kevin J. Hastings, 1988. "Optimal Impulse Control of Portfolios," Mathematics of Operations Research, INFORMS, vol. 13(4), pages 588-605, November.
    8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    9. A. E. Whalley & P. Wilmott, 1997. "An Asymptotic Analysis of an Optimal Hedging Model for Option Pricing with Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 7(3), pages 307-324, July.
    10. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zakamouline, Valeri I., 2006. "European option pricing and hedging with both fixed and proportional transaction costs," Journal of Economic Dynamics and Control, Elsevier, vol. 30(1), pages 1-25, January.
    2. Monoyios, Michael, 2004. "Option pricing with transaction costs using a Markov chain approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(5), pages 889-913, February.
    3. Valeri Zakamouline, 2003. "American Option Pricing with Transaction Costs," Finance 0311012, University Library of Munich, Germany.
    4. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    5. Valeri Zakamouline, 2005. "A unified approach to portfolio optimization with linear transaction costs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 62(2), pages 319-343, November.
    6. repec:dau:papers:123456789/5374 is not listed on IDEAS
    7. Valeri Zakamouline, 2004. "A Unified Approach to Portfolio Optimization with Linear Transaction Costs," GE, Growth, Math methods 0404003, University Library of Munich, Germany, revised 28 Apr 2004.
    8. Damgaard, Anders, 2003. "Utility based option evaluation with proportional transaction costs," Journal of Economic Dynamics and Control, Elsevier, vol. 27(4), pages 667-700, February.
    9. Lai, Tze Leung & Lim, Tiong Wee, 2009. "Option hedging theory under transaction costs," Journal of Economic Dynamics and Control, Elsevier, vol. 33(12), pages 1945-1961, December.
    10. Kallio, Markku & Ziemba, William T., 2007. "Using Tucker's theorem of the alternative to simplify, review and expand discrete arbitrage theory," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2281-2302, August.
    11. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    12. Naio Ino & Afonso De Campos Pint, 2014. "Delta Hedge Com Custos Detransação: Uma Análise Comparativa," Anais do XLI Encontro Nacional de Economia [Proceedings of the 41st Brazilian Economics Meeting] 143, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    13. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    14. Constantinides, George M. & Jackwerth, Jens Carsten & Perrakis, Stylianos, 2005. "Option pricing: Real and risk-neutral distributions," CoFE Discussion Papers 05/06, University of Konstanz, Center of Finance and Econometrics (CoFE).
    15. Leisen, Dietmar P. J., 1999. "The random-time binomial model," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1355-1386, September.
    16. Carlos de Lamare Bastian-Pinto & Alexandre Paula Silva Ramos & Luiz de Magalhães Ozorio & Luiz Eduardo Teixeira Brandão, 2015. "Uncertainty and Flexibility in the Brazilian Beef Livestock Sector: the Value of the Confinement Option," Brazilian Business Review, Fucape Business School, vol. 12(6), pages 100-120, November.
    17. Clewlow, Les & Hodges, Stewart, 1997. "Optimal delta-hedging under transactions costs," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1353-1376, June.
    18. Moyen, Nathalie & Slade, Margaret & Uppal, Raman, 1996. "Valuing risk and flexibility : A comparison of methods," Resources Policy, Elsevier, vol. 22(1-2), pages 63-74.
    19. Hahn, Warren J. & Dyer, James S., 2008. "Discrete time modeling of mean-reverting stochastic processes for real option valuation," European Journal of Operational Research, Elsevier, vol. 184(2), pages 534-548, January.
    20. Mark Broadie & Jérôme Detemple, 1996. "Recent Advances in Numerical Methods for Pricing Derivative Securities," CIRANO Working Papers 96s-17, CIRANO.
    21. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 2001. "When Is Time Continuous?," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II), chapter 3, pages 71-102, World Scientific Publishing Co. Pte. Ltd..

    More about this item

    Keywords

    option pricing; transaction costs; stochastic control; Markov chain approximation;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:0311009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.