IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v14y2014i1p101-110.html
   My bibliography  Save this article

Robust binomial lattices for univariate and multivariate applications: choosing probabilities to match local densities

Author

Listed:
  • Jimmy E. Hilliard

Abstract

A wide variety of diffusions used in financial economics are mean-reverting and many have state- and time-dependent volatilities. For processes with the latter property, a transformation along the lines suggested by Nelson and Ramaswamey can be used to give a diffusion with constant volatility and thus a computationally simple binomial lattice. Drift terms in mean-reverting and transformed processes frequently result in either ill-defined probabilities or complex grids. We develop closed-form, legitimate probabilities on a simple grid for univariate and multivariate lattices for well-posed smooth diffusions. The probabilities are based on conditional normal density functions with parameters determined by the diffusion. We demonstrate convergence in distribution under mild restrictions and provide numerical comparisons with other univariate and multivariate approaches.

Suggested Citation

  • Jimmy E. Hilliard, 2014. "Robust binomial lattices for univariate and multivariate applications: choosing probabilities to match local densities," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 101-110, January.
  • Handle: RePEc:taf:quantf:v:14:y:2014:i:1:p:101-110
    DOI: 10.1080/14697688.2013.793815
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2013.793815
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2013.793815?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ekvall, Niklas, 1996. "A lattice approach for pricing of multivariate contingent claims," European Journal of Operational Research, Elsevier, vol. 91(2), pages 214-228, June.
    2. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    3. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    4. Nelson, Daniel B & Ramaswamy, Krishna, 1990. "Simple Binomial Processes as Diffusion Approximations in Financial Models," The Review of Financial Studies, Society for Financial Studies, vol. 3(3), pages 393-430.
    5. Broadie, Mark & Detemple, Jerome, 1996. "American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods," The Review of Financial Studies, Society for Financial Studies, vol. 9(4), pages 1211-1250.
    6. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    7. He, Hua, 1990. "Convergence from Discrete- to Continuous-Time Contingent Claims Prices," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 523-546.
    8. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    10. Bardia Kamrad & Peter Ritchken, 1991. "Multinomial Approximating Models for Options with k State Variables," Management Science, INFORMS, vol. 37(12), pages 1640-1652, December.
    11. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong Zou & Pu Gong, 2017. "A Lattice Framework with Smooth Convergence for Pricing Real Estate Derivatives with Stochastic Interest Rate," The Journal of Real Estate Finance and Economics, Springer, vol. 55(2), pages 242-263, August.
    2. Dirk Sierag & Bernard Hanzon, 2018. "Pricing derivatives on multiple assets: recombining multinomial trees based on Pascal’s simplex," Annals of Operations Research, Springer, vol. 266(1), pages 101-127, July.
    3. Gambaro, Anna Maria & Kyriakou, Ioannis & Fusai, Gianluca, 2020. "General lattice methods for arithmetic Asian options," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1185-1199.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    3. Bowei Chen & Jun Wang, 2014. "A lattice framework for pricing display advertisement options with the stochastic volatility underlying model," Papers 1409.0697, arXiv.org, revised Dec 2015.
    4. Mark Broadie & Jérôme Detemple, 1996. "Recent Advances in Numerical Methods for Pricing Derivative Securities," CIRANO Working Papers 96s-17, CIRANO.
    5. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    6. Andrea Beltratti & Paolo Colla, 2007. "A portfolio-based evaluation of affine term structure models," Annals of Operations Research, Springer, vol. 151(1), pages 193-222, April.
    7. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    8. Chuang-Chang Chang & Jun-Biao Lin, 2010. "The valuation of multivariate contingent claims under transformed trinomial approaches," Review of Quantitative Finance and Accounting, Springer, vol. 34(1), pages 23-36, January.
    9. repec:dau:papers:123456789/5374 is not listed on IDEAS
    10. Aricson Cruz & José Carlos Dias, 2020. "Valuing American-style options under the CEV model: an integral representation based method," Review of Derivatives Research, Springer, vol. 23(1), pages 63-83, April.
    11. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, August.
    12. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, March.
    13. Andrea Gamba & Lenos Trigeorgis, 2007. "An Improved Binomial Lattice Method for Multi-Dimensional Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(5), pages 453-475.
    14. Kyoung-Sook Moon & Hongjoong Kim, 2013. "A multi-dimensional local average lattice method for multi-asset models," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 873-884, May.
    15. Jimmy E. Hilliard & Adam L. Schwartz & Alan L. Tucker, 1996. "Bivariate Binomial Options Pricing With Generalized Interest Rate Processes," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(4), pages 585-602, December.
    16. Dimson, Elroy & Mussavian, Massoud, 1999. "Three centuries of asset pricing," Journal of Banking & Finance, Elsevier, vol. 23(12), pages 1745-1769, December.
    17. Chuang-Chang Chang & Jun-Biao Lin & Wei-Che Tsai & Yaw-Huei Wang, 2012. "Using Richardson extrapolation techniques to price American options with alternative stochastic processes," Review of Quantitative Finance and Accounting, Springer, vol. 39(3), pages 383-406, October.
    18. Carlos Andrés Zapata Quimbayo, 2020. "OPCIONES REALES Una guía teórico-práctica para la valoración de inversiones bajo incertidumbre mediante modelos en tiempo discreto y simulación de Monte Carlo," Books, Universidad Externado de Colombia, Facultad de Finanzas, Gobierno y Relaciones Internacionales, number 138, September.
    19. Yuan Hu & W. Brent Lindquist & Svetlozar T. Rachev & Frank J. Fabozzi, 2023. "Option pricing using a skew random walk pricing tree," Papers 2303.17014, arXiv.org.
    20. Ben-Ameur, Hatem & de Frutos, Javier & Fakhfakh, Tarek & Diaby, Vacaba, 2013. "Upper and lower bounds for convex value functions of derivative contracts," Economic Modelling, Elsevier, vol. 34(C), pages 69-75.
    21. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2022. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Journal of Finance, American Finance Association, vol. 77(5), pages 2853-2906, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:14:y:2014:i:1:p:101-110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.