IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v30y1996i3p189-206.html
   My bibliography  Save this article

Timing utility of daily activities and its impact on travel

Author

Listed:
  • Wang, James Jixian

Abstract

As an activity-based approach, this study focuses on the methodology of estimating the timing utility of people's daily activities and examines how such utility interacts with travel time. This study argues that the utility of time for undertaking a specific activity may vary over the course of day. That is, each activity has its ideal time to be undertaken. The utility of "saved" travel time thus depends on not only the value of travel time, but also "where" the "saved" time slot is "located" and the increasing utility due to rescheduling other activities to make use of this time slot. The estimation of such utility therefore needs a methodology to estimate people's timing choices and timing utility over all major daily activities. To achieve this goal, a two-stage simulation model is established. The hazard-rate duration is used to estimate the revealed preferences of Canadians on their major daily activities. The estimates are then applied to a scheduling program to examine how trip makers determine the optimal objective to maximize their total timing utility. With the results of this simulation, the tradeoff between travel time and the scheduling choices is examined and a commuter equilibrium is established on a basis of activity timing utility, work start-time, and travel time.

Suggested Citation

  • Wang, James Jixian, 1996. "Timing utility of daily activities and its impact on travel," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(3), pages 189-206, May.
  • Handle: RePEc:eee:transa:v:30:y:1996:i:3:p:189-206
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0965-8564(95)00023-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henderson, J. Vernon, 1981. "The economics of staggered work hours," Journal of Urban Economics, Elsevier, vol. 9(3), pages 349-364, May.
    2. Paul W. Wilson, 1989. "Scheduling Costs and the Value of Travel Time," Urban Studies, Urban Studies Journal Limited, vol. 26(3), pages 356-366, June.
    3. Harvey, A.S., 1992. "Changing Temporal Perspectives and the Canadian Metropolis," Papers 92-65, Saint Mary's - Department of Economics.
    4. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-479, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stephane Hess & John Polak & Andrew Daly & Geoffrey Hyman, 2007. "Flexible substitution patterns in models of mode and time of day choice: new evidence from the UK and the Netherlands," Transportation, Springer, vol. 34(2), pages 213-238, March.
    2. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2014. "Bottleneck model revisited: An activity-based perspective," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 262-287.
    3. Iragaël Joly & Karl Littlejohn & Vincent Kaufmann, 2006. "La croissance des budgets-temps de transport en question : nouvelles approches," Post-Print halshs-00174992, HAL.
    4. Jason D. Lemp & Kara M. Kockelman & Paul Damien, 2012. "A Bivariate Multinomial Probit Model for Trip Scheduling: Bayesian Analysis of the Work Tour," Transportation Science, INFORMS, vol. 46(3), pages 405-424, August.
    5. Ram Pendyala & Chandra Bhat, 2004. "An Exploration of the Relationship between Timing and Duration of Maintenance Activities," Transportation, Springer, vol. 31(4), pages 429-456, November.
    6. Jindo Jeong & Jiwon Lee & Tae‐Hyoung Tommy Gim, 2022. "Travel mode choice as a representation of travel utility: A multilevel approach reflecting the hierarchical structure of trip, individual, and neighborhood characteristics," Papers in Regional Science, Wiley Blackwell, vol. 101(3), pages 745-765, June.
    7. Lemp, Jason D. & Kockelman, Kara M. & Damien, Paul, 2010. "The continuous cross-nested logit model: Formulation and application for departure time choice," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 646-661, June.
    8. Zhang, Xiaoning & Yang, Hai & Huang, Hai-Jun & Zhang, H. Michael, 2005. "Integrated scheduling of daily work activities and morning-evening commutes with bottleneck congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(1), pages 41-60, January.
    9. Lizana, Pedro & Ortúzar, Juan de Dios & Arellana, Julián & Rizzi, Luis I., 2021. "Forecasting with a joint mode/time-of-day choice model based on combined RP and SC data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 302-316.
    10. Dick Ettema & Olu Ashiru & John Polak & Fabian Bastin, 2005. "Taste Heterogeneity and Substitution Patterns in Models of the Simultaneous Choice of Activity Timing and Duration," ERSA conference papers ersa05p439, European Regional Science Association.
    11. Eva Gutiérrez-i-Puigarnau & Jos N. Van Ommeren, 2012. "Start Time and Worker Compensation Implications for Staggered-Hours Programmes," Journal of Transport Economics and Policy, University of Bath, vol. 46(2), pages 205-220, May.
    12. Andrew Daly & Stephane Hess & Geoff Hyman & John Polak & Charlene Rohr, 2005. "Modelling departure time and mode choice," ERSA conference papers ersa05p688, European Regional Science Association.
    13. Fosgerau, Mogens & Engelson, Leonid, 2011. "The value of travel time variance," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 1-8, January.
    14. Robin Lindsey, 2004. "Existence, Uniqueness, and Trip Cost Function Properties of User Equilibrium in the Bottleneck Model with Multiple User Classes," Transportation Science, INFORMS, vol. 38(3), pages 293-314, August.
    15. Yamamoto, Toshiyuki & Madre, Jean-Loup & Kitamura, Ryuichi, 2004. "An analysis of the effects of French vehicle inspection program and grant for scrappage on household vehicle transaction," Transportation Research Part B: Methodological, Elsevier, vol. 38(10), pages 905-926, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noland, Robert B. & Small, Kenneth A. & Koskenoja, Pia Maria & Chu, Xuehao, 1998. "Simulating travel reliability," Regional Science and Urban Economics, Elsevier, vol. 28(5), pages 535-564, September.
    2. Verhoef, Erik T., 2020. "Optimal congestion pricing with diverging long-run and short-run scheduling preferences," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 191-209.
    3. John W Helsel & Venktesh Pandey & Stephen D. Boyles, 2020. "Time-Equitable Dynamic Tolling Scheme For Single Bottlenecks," Papers 2007.07091, arXiv.org.
    4. Nicolas Coulombel & André de Palma, 2014. "The marginal social cost of travel time variability," Post-Print hal-01100105, HAL.
    5. Wilfredo Yushimito & Xuegang Ban & José Holguín-Veras, 2015. "Correcting the Market Failure in Work Trips with Work Rescheduling: An Analysis Using Bi-level Models for the Firm-workers Interplay," Networks and Spatial Economics, Springer, vol. 15(3), pages 883-915, September.
    6. Peer, Stefanie & Verhoef, Erik T., 2013. "Equilibrium at a bottleneck when long-run and short-run scheduling preferences diverge," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 12-27.
    7. Su, Qida & Wang, David Z.W., 2020. "On the commute travel pattern with compressed work schedule," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 334-356.
    8. Richard Arnott, 1986. "Information and Time-Of-Use Decisions in Stochastically Congestable Facilities," Discussion Papers 788, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    9. Kenneth A. Small & Xuehao Chu, 2003. "Hypercongestion," Journal of Transport Economics and Policy, University of Bath, vol. 37(3), pages 319-352, September.
    10. Fosgerau, Mogens & Small, Kenneth A., 2013. "Hypercongestion in downtown metropolis," Journal of Urban Economics, Elsevier, vol. 76(C), pages 122-134.
    11. van Loon, Ruben & Rietveld, Piet & Brons, Martijn, 2011. "Travel-time reliability impacts on railway passenger demand: a revealed preference analysis," Journal of Transport Geography, Elsevier, vol. 19(4), pages 917-925.
    12. Small, K. & Noland, R. & Koskenoja, P., 1995. "Socio-economic Attributes And Impacts Of Travel Reliability: A Stated Preference Approach," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt82n2w53k, Institute of Transportation Studies, UC Berkeley.
    13. Zhu, Tingting & Li, Yao & Long, Jiancheng, 2022. "Departure time choice equilibrium and tolling strategies for a bottleneck with continuous scheduling preference," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    14. André de Palma & Mogens Fosgerau, 2010. "Dynamic and Static congestion models: A review," Working Papers hal-00539166, HAL.
    15. Arnott, Richard, 2011. "A Bathtub Model of Traffic Congestion," University of California Transportation Center, Working Papers qt9zx130zz, University of California Transportation Center.
    16. Long, Jiancheng & Szeto, W.Y., 2019. "Congestion and environmental toll schemes for the morning commute with heterogeneous users and parallel routes," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 305-333.
    17. Zhang, Xiaoning & Yang, Hai & Huang, Hai-Jun & Zhang, H. Michael, 2005. "Integrated scheduling of daily work activities and morning-evening commutes with bottleneck congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(1), pages 41-60, January.
    18. Ho, Chinh Q. & Mulley, Corinne, 2013. "Multiple purposes at single destination: A key to a better understanding of the relationship between tour complexity and mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 206-219.
    19. Paul W. Wilson, 1989. "Scheduling Costs and the Value of Travel Time," Urban Studies, Urban Studies Journal Limited, vol. 26(3), pages 356-366, June.
    20. Richard Arnott, 1992. "Information and Usage of Congestible Facilities Under Free Access," Discussion Papers 974, Northwestern University, Center for Mathematical Studies in Economics and Management Science.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:30:y:1996:i:3:p:189-206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.