IDEAS home Printed from https://ideas.repec.org/p/wbk/wbrwps/7043.html
   My bibliography  Save this paper

Updating poverty estimates at frequent intervals in the absence of consumption data : methods and illustration with reference to a middle-income country

Author

Listed:
  • Dang,Hai-Anh H.
  • Lanjouw,Peter F.
  • Serajuddin,Umar
  • Dang,Hai-Anh H.
  • Lanjouw,Peter F.
  • Serajuddin,Umar

Abstract

Obtaining consistent estimates on poverty over time as well as monitoring poverty trends on a timely basis is a priority concern for policy makers. However, these objectives are not readily achieved in practice when household consumption data are neither frequently collected, nor constructed using consistent and transparent criteria. This paper develops a formal framework for survey-to-survey poverty imputation in an attempt to overcome these obstacles, and to elevate the discussion of these methods beyond the largely ad-hoc efforts in the existing literature. The framework introduced here imposes few restrictive assumptions, works with simple variance formulas, provides guidance on the selection of control variables for model building, and can be generally applied to imputation either from one survey to another survey with the same design, or to another survey with a different design. Empirical results analyzing the Household Expenditure and Income Survey and the Unemployment and Employment Survey in Jordan are quite encouraging, with imputation-based poverty estimates closely tracking the direct estimates of poverty.

Suggested Citation

  • Dang,Hai-Anh H. & Lanjouw,Peter F. & Serajuddin,Umar & Dang,Hai-Anh H. & Lanjouw,Peter F. & Serajuddin,Umar, 2014. "Updating poverty estimates at frequent intervals in the absence of consumption data : methods and illustration with reference to a middle-income country," Policy Research Working Paper Series 7043, The World Bank.
  • Handle: RePEc:wbk:wbrwps:7043
    as

    Download full text from publisher

    File URL: http://documents.worldbank.org/curated/en/885871468038932722/pdf/Updating-poverty-estimates-at-frequent-intervals-in-the-absence-of-consumption-data-methods-and-illustration-with-reference-to-a-middle-income-country.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tarozzi, Alessandro, 2007. "Calculating Comparable Statistics From Incomparable Surveys, With an Application to Poverty in India," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 314-336, July.
    2. (No last name available), Himanshu, 2013. "Poverty and Food Security in India," ADB Economics Working Paper Series 369, Asian Development Bank.
    3. Newhouse, D. & Shivakumaran, S. & Takamatsu, S. & Yoshida, N., 2014. "How survey-to-survey imputation can fail," Policy Research Working Paper Series 6961, The World Bank.
    4. Oaxaca, Ronald, 1973. "Male-Female Wage Differentials in Urban Labor Markets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(3), pages 693-709, October.
    5. Stephen P. Jenkins & Richard V. Burkhauser & Shuaizhang Feng & Jeff Larrimore, 2011. "Measuring inequality using censored data: a multiple‐imputation approach to estimation and inference," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(1), pages 63-81, January.
    6. Alan S. Blinder, 1973. "Wage Discrimination: Reduced Form and Structural Estimates," Journal of Human Resources, University of Wisconsin Press, vol. 8(4), pages 436-455.
    7. Angus Deaton and Jean Drèze & Jean Drèze, 2002. "Poverty and Inequality in India: A Reexamination," Working papers 107, Centre for Development Economics, Delhi School of Economics.
    8. Alessandro Tarozzi & Angus Deaton, 2009. "Using Census and Survey Data to Estimate Poverty and Inequality for Small Areas," The Review of Economics and Statistics, MIT Press, vol. 91(4), pages 773-792, November.
    9. Yoko Kijima & Lanjouw, Peter, 2003. "Poverty in India during the1990s - a regional perspective," Policy Research Working Paper Series 3141, The World Bank.
    10. Yun, Myeong-Su, 2004. "Decomposing differences in the first moment," Economics Letters, Elsevier, vol. 82(2), pages 275-280, February.
    11. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    12. Angus Deaton & Valerie Kozel, 2005. "Data and Dogma: The Great Indian Poverty Debate," The World Bank Research Observer, World Bank, vol. 20(2), pages 177-199.
    13. Ravallion, Martin, 1996. "How Well Can Method Substitute for Data? Five Experiments in Poverty Analysis," The World Bank Research Observer, World Bank, vol. 11(2), pages 199-221, August.
    14. Dang,Hai-Anh H. & Lanjouw,Peter F., 2013. "Measuring poverty dynamics with synthetic panels based on cross-sections," Policy Research Working Paper Series 6504, The World Bank.
    15. Sahn, David E. & Stifel, David C., 2000. "Poverty Comparisons Over Time and Across Countries in Africa," World Development, Elsevier, vol. 28(12), pages 2123-2155, December.
    16. Deon Filmer & Lant Pritchett, 2001. "Estimating Wealth Effects Without Expenditure Data—Or Tears: An Application To Educational Enrollments In States Of India," Demography, Springer;Population Association of America (PAA), vol. 38(1), pages 115-132, February.
    17. Little, Roderick J A, 1988. "Missing-Data Adjustments in Large Surveys," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(3), pages 287-296, July.
    18. David Stifel & Luc Christiaensen, 2007. "Tracking Poverty Over Time in the Absence of Comparable Consumption Data," The World Bank Economic Review, World Bank, vol. 21(2), pages 317-341, June.
    19. Mohamed Douidich & Abdeljaouad Ezzrari & Roy Van der Weide & Paolo Verme, 2016. "Estimating Quarterly Poverty Rates Using Labor Force Surveys: A Primer," The World Bank Economic Review, World Bank, vol. 30(3), pages 475-500.
    20. Daniel A. Powers & Hirotoshi Yoshioka & Myeong-Su Yun, 2011. "mvdcmp: Multivariate decomposition for nonlinear response models," Stata Journal, StataCorp LP, vol. 11(4), pages 556-576, December.
    21. Astrid Mathiassen, 2009. "A model based approach for predicting annual poverty rates without expenditure data," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 7(2), pages 117-135, June.
    22. King, Gary & Honaker, James & Joseph, Anne & Scheve, Kenneth, 2001. "Analyzing Incomplete Political Science Data: An Alternative Algorithm for Multiple Imputation," American Political Science Review, Cambridge University Press, vol. 95(1), pages 49-69, March.
    23. Dang, Hai-Anh & Lanjouw, Peter & Luoto, Jill & McKenzie, David, 2014. "Using repeated cross-sections to explore movements into and out of poverty," Journal of Development Economics, Elsevier, vol. 107(C), pages 112-128.
    24. Hentschel, Jesko, et al, 2000. "Combining Census and Survey Data to Trace the Spatial Dimensions of Poverty: A Case Study of Ecuador," The World Bank Economic Review, World Bank, vol. 14(1), pages 147-165, January.
    25. Adam Davey & Michael J. Shanahan & Joseph L. Schafer, 2001. "Correcting for Selective Nonresponse in the National Longitudinal Survey of Youth Using Multiple Imputation," Journal of Human Resources, University of Wisconsin Press, vol. 36(3), pages 500-519.
    26. Gourieroux, Christian & Monfort, Alain, 1997. "Simulation-based Econometric Methods," OUP Catalogue, Oxford University Press, number 9780198774754.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hai-Anh H. Dang & Peter F. Lanjouw, 2018. "Poverty Dynamics in India between 2004 and 2012: Insights from Longitudinal Analysis Using Synthetic Panel Data," Economic Development and Cultural Change, University of Chicago Press, vol. 67(1), pages 131-170.
    2. Hai‐Anh Dang & Dean Jolliffe & Calogero Carletto, 2019. "Data Gaps, Data Incomparability, And Data Imputation: A Review Of Poverty Measurement Methods For Data‐Scarce Environments," Journal of Economic Surveys, Wiley Blackwell, vol. 33(3), pages 757-797, July.
    3. Caroline Krafft & Ragui Assaad & Hanan Nazier & Racha Ramadan & Atiyeh Vahidmanesh & Sami Zouari, 2019. "Estimating poverty and inequality in the absence of consumption data: an application to the Middle East and North Africa," Middle East Development Journal, Taylor & Francis Journals, vol. 11(1), pages 1-29, January.
    4. World Bank, 2016. "Tunisia Poverty Assessment 2015," World Bank Publications - Reports 24410, The World Bank Group.
    5. Hai-Anh H. Dang & Peter F. Lanjouw & Umar Serajuddin, 2017. "Updating poverty estimates in the absence of regular and comparable consumption data: methods and illustration with reference to a middle-income country," Oxford Economic Papers, Oxford University Press, vol. 69(4), pages 939-962.
    6. Dang,Hai-Anh H., 2018. "To impute or not to impute ? a review of alternative poverty estimation methods in the context of unavailable consumption data," Policy Research Working Paper Series 8403, The World Bank.
    7. Jose Cuesta & Gabriel Lara Ibarra, 2017. "Comparing Cross-Survey Micro Imputation and Macro Projection Techniques: Poverty in Post Revolution Tunisia," Journal of Income Distribution, Ad libros publications inc., vol. 25(1), pages 1-30, March.
    8. Dang, Hai-Anh H. & Serajuddin, Umar, 2020. "Tracking the sustainable development goals: Emerging measurement challenges and further reflections," World Development, Elsevier, vol. 127(C).
    9. Dang,Hai-Anh H. & Verme,Paolo, 2019. "Estimating Poverty for Refugee Populations : Can Cross-Survey Imputation Methods Substitute for Data Scarcity ?," Policy Research Working Paper Series 9076, The World Bank.
    10. Thomas Pave Sohnesen & Niels Stender, 2017. "Is Random Forest a Superior Methodology for Predicting Poverty? An Empirical Assessment," Poverty & Public Policy, John Wiley & Sons, vol. 9(1), pages 118-133, March.
    11. Jose Cuesta & Gabriel Lara Ibarra, 2018. "Comparing Cross-Survey Micro Imputation and Macro Projection Techniques: Poverty in Post Revolution Tunisia," Journal of Income Distribution, Ad libros publications inc., vol. 25(1), pages 1-30, March.
    12. Peter Edward & Andy Sumner, 2015. "New estimates of global poverty and inequality: How much difference do price data," Working Papers 365, ECINEQ, Society for the Study of Economic Inequality.
    13. Hai-Anh H. Dang & Paolo Verme, 2023. "Estimating poverty for refugees in data-scarce contexts: an application of cross-survey imputation," Journal of Population Economics, Springer;European Society for Population Economics, vol. 36(2), pages 653-679, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hai-Anh H. Dang & Peter F. Lanjouw & Umar Serajuddin, 2017. "Updating poverty estimates in the absence of regular and comparable consumption data: methods and illustration with reference to a middle-income country," Oxford Economic Papers, Oxford University Press, vol. 69(4), pages 939-962.
    2. Hai‐Anh Dang & Dean Jolliffe & Calogero Carletto, 2019. "Data Gaps, Data Incomparability, And Data Imputation: A Review Of Poverty Measurement Methods For Data‐Scarce Environments," Journal of Economic Surveys, Wiley Blackwell, vol. 33(3), pages 757-797, July.
    3. Dang,Hai-Anh H., 2018. "To impute or not to impute ? a review of alternative poverty estimation methods in the context of unavailable consumption data," Policy Research Working Paper Series 8403, The World Bank.
    4. Dang,Hai-Anh H. & Kilic,Talip & Carletto,Calogero & Abanokova,Kseniya, 2021. "Poverty Imputation in Contexts without Consumption Data : A Revisit with Further Refinements," Policy Research Working Paper Series 9838, The World Bank.
    5. Luc Christiaensen & Peter Lanjouw & Jill Luoto & David Stifel, 2012. "Small area estimation-based prediction methods to track poverty: validation and applications," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 10(2), pages 267-297, June.
    6. Hai‐Anh H. Dang, 2021. "To impute or not to impute, and how? A review of poverty‐estimation methods in the absence of consumption data," Development Policy Review, Overseas Development Institute, vol. 39(6), pages 1008-1030, November.
    7. Dang, Hai-Anh H & Lanjouw, Peter F., 2021. "Data Scarcity and Poverty Measurement," IZA Discussion Papers 14631, Institute of Labor Economics (IZA).
    8. Hai-Anh H. Dang & Peter F. Lanjouw, 2018. "Poverty Dynamics in India between 2004 and 2012: Insights from Longitudinal Analysis Using Synthetic Panel Data," Economic Development and Cultural Change, University of Chicago Press, vol. 67(1), pages 131-170.
    9. Hai-Anh H. Dang & Peter F. Lanjouw, 2023. "Regression-based imputation for poverty measurement in data-scarce settings," Chapters, in: Jacques Silber (ed.), Research Handbook on Measuring Poverty and Deprivation, chapter 13, pages 141-150, Edward Elgar Publishing.
    10. Ahmed, Faizuddin & Dorji, Cheku & Takamatsu, Shinya & Yoshida, Nobuo, 2014. "Hybrid survey to improve the reliability of poverty statistics in a cost-effective manner," Policy Research Working Paper Series 6909, The World Bank.
    11. Dang, Hai-Anh H & Carletto, Calogero, 2022. "Recall Bias Revisited: Measure Farm Labor Using Mixed-Mode Surveys and Multiple Imputation," IZA Discussion Papers 14997, Institute of Labor Economics (IZA).
    12. Dang, Hai-Anh H & Kilic, Talip & Hlasny, Vladimir & Abanokova, Kseniya & Carletto, Calogero, 2024. "Using Survey-to-Survey Imputation to Fill Poverty Data Gaps at a Low Cost: Evidence from a Randomized Survey Experiment," IZA Discussion Papers 16792, Institute of Labor Economics (IZA).
    13. Hai-Anh H. Dang & Talip Kilic & Ksenia Abanokova & Gero Carletto, 2024. "Imputing Poverty Indicators without Consumption Data : An Exploratory Analysis," Policy Research Working Paper Series 10867, The World Bank.
    14. F. Clementi & A. L. Dabalen & V. Molini & F. Schettino, 2017. "When the Centre Cannot Hold: Patterns of Polarization in Nigeria," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 63(4), pages 608-632, December.
    15. World Bank, 2016. "Tunisia Poverty Assessment 2015," World Bank Publications - Reports 24410, The World Bank Group.
    16. Newhouse, D. & Shivakumaran, S. & Takamatsu, S. & Yoshida, N., 2014. "How survey-to-survey imputation can fail," Policy Research Working Paper Series 6961, The World Bank.
    17. Laetitia Duval & François-Charles Wolff, 2016. "Emigration intentions of Roma: evidence from Central and South-East Europe," Post-Communist Economies, Taylor & Francis Journals, vol. 28(1), pages 87-107, January.
    18. Michal Brzezinski, 2019. "Diagnosing Unhappiness Dynamics: Evidence from Poland and Russia," Journal of Happiness Studies, Springer, vol. 20(7), pages 2291-2327, October.
    19. Galperin, Hernan & Arcidiacono, Malena, 2021. "Employment and the gender digital divide in Latin America: A decomposition analysis," Telecommunications Policy, Elsevier, vol. 45(7).
    20. Carlo Azzarri & Gero Carletto & Benjamin Davis & Alberto Zezza, 2006. "Monitoring Poverty Without Consumption Data : An Application Using the Albania Panel Survey," Eastern European Economics, Taylor & Francis Journals, vol. 44(1), pages 59-82, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wbk:wbrwps:7043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Roula I. Yazigi (email available below). General contact details of provider: https://edirc.repec.org/data/dvewbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.