Testing Prediction Performance of Poverty Models: Empirical Evidence from U ganda
Author
Abstract
Suggested Citation
DOI: 10.1111/roiw.2013.59.issue-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Talip Kilic & Thomas Pave Sohnesen, 2019.
"Same Question But Different Answer: Experimental Evidence on Questionnaire Design's Impact on Poverty Measured by Proxies,"
Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 65(1), pages 144-165, March.
- Kilic,Talip & Pave Sohnesen,Thomas & Kilic,Talip & Pave Sohnesen,Thomas, 2015. "Same question but different answer : experimental evidence on questionnaire design's impact on poverty measured by proxies," Policy Research Working Paper Series 7182, The World Bank.
- Kilic, Talip & Sohnesen, Thomas, 2015. "Same Question but Different Answer Experimental Evidence on Questionnaire Design's Impact on Pverty Measured by Proxies," 2015 Conference, August 9-14, 2015, Milan, Italy 211850, International Association of Agricultural Economists.
- Thomas Pave Sohnesen & Niels Stender, 2017. "Is Random Forest a Superior Methodology for Predicting Poverty? An Empirical Assessment," Poverty & Public Policy, John Wiley & Sons, vol. 9(1), pages 118-133, March.
- Hai-Anh H. Dang & Peter F. Lanjouw, 2018.
"Poverty Dynamics in India between 2004 and 2012: Insights from Longitudinal Analysis Using Synthetic Panel Data,"
Economic Development and Cultural Change, University of Chicago Press, vol. 67(1), pages 131-170.
- Dang,Hai-Anh H. & Lanjouw,Peter F. & Dang,Hai-Anh H. & Lanjouw,Peter F., 2015. "Poverty dynamics in India between 2004 and 2012 : insights from longitudinal analysis using synthetic panel data," Policy Research Working Paper Series 7270, The World Bank.
- Betti, Gianni & Molini, Vasco & Mori, Lorenzo, 2024. "An attempt to correct the underestimation of inequality measures in cross-survey imputation through generalized additive models for location, scale and shape," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
- Jose Cuesta & Gabriel Lara Ibarra, 2018. "Comparing Cross-Survey Micro Imputation and Macro Projection Techniques: Poverty in Post Revolution Tunisia," Journal of Income Distribution, Ad libros publications inc., vol. 25(1), pages 1-30, March.
- Hai‐Anh Dang & Dean Jolliffe & Calogero Carletto, 2019.
"Data Gaps, Data Incomparability, And Data Imputation: A Review Of Poverty Measurement Methods For Data‐Scarce Environments,"
Journal of Economic Surveys, Wiley Blackwell, vol. 33(3), pages 757-797, July.
- Dang,Hai-Anh H. & Jolliffe,Dean Mitchell & Carletto,Calogero & Dang,Hai-Anh H. & Jolliffe,Dean Mitchell & Carletto,Calogero, 2017. "Data gaps, data incomparability, and data imputation : a review of poverty measurement methods for data-scarce environments," Policy Research Working Paper Series 8282, The World Bank.
- Dang, Hai-Anh & Jolliffe, Dean & Carletto, Calogero, 2018. "Data Gaps, Data Incomparability, and Data Imputation: A Review of Poverty Measurement Methods for Data-Scarce Environments," GLO Discussion Paper Series 179, Global Labor Organization (GLO).
- Hai-Anh Dang & Dean Jolliffe & Calogero Carletto, 2018. "Data gaps, data incomparability, and data imputation: A review of poverty measurement methods for data-scarce environments," Working Papers 456, ECINEQ, Society for the Study of Economic Inequality.
- Betti,Gianni & Molini,Vasco & Mori,Lorenzo, 2022. "New Algorithm to Estimate Inequality Measures in Cross-Survey Imputation : An Attemptto Correct the Underestimation of Extreme Values," Policy Research Working Paper Series 10013, The World Bank.
- Dang, Hai-Anh H & Lanjouw, Peter F., 2021.
"Data Scarcity and Poverty Measurement,"
IZA Discussion Papers
14631, Institute of Labor Economics (IZA).
- Dang, Hai-Anh H. & Lanjouw, Peter F., 2021. "Data Scarcity and Poverty Measurement," GLO Discussion Paper Series 904, Global Labor Organization (GLO).
- Cuesta, Jose & Chagalj, Cristian, 2019. "Measuring poverty with administrative data in data deprived contexts: The case of Nicaragua," Economics Letters, Elsevier, vol. 183(C), pages 1-1.
- Dang, Hai-Anh H & Verme, Paolo, 2019.
"Estimating Poverty for Refugee Populations: Can Cross-Survey Imputation Methods Substitute for Data Scarcity?,"
IZA Discussion Papers
12822, Institute of Labor Economics (IZA).
- Dang,Hai-Anh H. & Verme,Paolo, 2019. "Estimating Poverty for Refugee Populations : Can Cross-Survey Imputation Methods Substitute for Data Scarcity ?," Policy Research Working Paper Series 9076, The World Bank.
- Dang, Hai-Anh H. & Verme, Paolo, 2019. "Estimating Poverty for Refugee Populations: Can Cross-Survey Imputation Methods Substitute for Data Scarcity?," GLO Discussion Paper Series 429, Global Labor Organization (GLO).
- Ligon, Ethan & Christiaensen, Luc & Sohnesen, Thomas P, 2020.
"Should Consumption Sub-Aggregates be Used to Measure Poverty?,"
Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series
qt9b9929jh, Department of Agricultural & Resource Economics, UC Berkeley.
- Christiaensen,Luc & Ligon,Ethan & Pave Sohnesen,Thomas, 2020. "Should Consumption Sub-Aggregates Be Used to Measure Poverty ?," Policy Research Working Paper Series 9312, The World Bank.
- Hai-Anh H. Dang & Peter F. Lanjouw & Umar Serajuddin, 2017. "Updating poverty estimates in the absence of regular and comparable consumption data: methods and illustration with reference to a middle-income country," Oxford Economic Papers, Oxford University Press, vol. 69(4), pages 939-962.
- Dang,Hai-Anh H. & Kilic,Talip & Carletto,Calogero & Abanokova,Kseniya, 2021.
"Poverty Imputation in Contexts without Consumption Data : A Revisit with Further Refinements,"
Policy Research Working Paper Series
9838, The World Bank.
- Dang, Hai-Anh H & Kilic, Talip & Abanokova, Kseniya & Carletto, Calogero, 2023. "Poverty Imputation in Contexts without Consumption Data: A Revisit with Further Refinements," IZA Discussion Papers 15873, Institute of Labor Economics (IZA).
- Dang, Hai-Anh H. & Kilic, Talip & Abanokova, Kseniya & Carletto, Calogero, 2023. "Poverty Imputation in Contexts without Consumption Data: A Revisit with Further Refinements," GLO Discussion Paper Series 1226, Global Labor Organization (GLO).
- Dang, Hai-Anh H. & Kilic, Talip & Abanokova, Kseniya & Carletto, Calogero, 2024. "Poverty imputation in contexts without consumption data: a revisit with further refinements," LSE Research Online Documents on Economics 125798, London School of Economics and Political Science, LSE Library.
- Jose Cuesta & Gabriel Lara Ibarra, 2017. "Comparing Cross-Survey Micro Imputation and Macro Projection Techniques: Poverty in Post Revolution Tunisia," Journal of Income Distribution, Ad libros publications inc., vol. 25(1), pages 1-30, March.
- Pave Sohnesen,Thomas & Stender,Niels, 2016. "Is random forest a superior methodology for predicting poverty ? an empirical assessment," Policy Research Working Paper Series 7612, The World Bank.
- Astrid Mathiassen & Bjørn K. Wold, 2019. "Challenges in predicting poverty trends using survey to survey imputation. Experiences from Malawi," Discussion Papers 900, Statistics Norway, Research Department.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:revinw:v:59:y:2013:i:1:p:91-112. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/iariwea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.