IDEAS home Printed from https://ideas.repec.org/p/wbk/wbrwps/8878.html
   My bibliography  Save this paper

Estimating Poverty in India without Expenditure Data : A Survey-to-Survey Imputation Approach

Author

Listed:
  • Newhouse,David Locke
  • Vyas,Pallavi

Abstract

This paper applies an innovative method to estimate poverty in India in the absence of recent expenditure data. The method utilizes expenditure data from 2004-05, 2009-10, and 2011-12 to impute household expenditure into a survey of durable goods expenditure conducted in 2014-15. At the $1.90 per day international poverty line, the preferred model predicts a 2014-15 head- count poverty rate of 10 percent in urban areas and 16.4 percent in rural areas, implying a poverty rate of 14.6 percent nationally. The implied poverty elasticity with respect to growth in per capita Gross Domestic Product (GDP) is within the range of past experience, and states with higher gross domestic product growth saw greater predicted poverty reductions. In validation tests, the model's predictions perform comparably to the World Bank's current adjustment method when predicting for 2011-12 but they are far more accurate when predicting for 2004-05. Three alternative specifications give moderately higher estimates of poverty. The results indicate that survey-to-survey imputation, when feasible, is a preferable alternative to the current method used to adjust survey-based poverty estimates to later years.

Suggested Citation

  • Newhouse,David Locke & Vyas,Pallavi, 2019. "Estimating Poverty in India without Expenditure Data : A Survey-to-Survey Imputation Approach," Policy Research Working Paper Series 8878, The World Bank.
  • Handle: RePEc:wbk:wbrwps:8878
    as

    Download full text from publisher

    File URL: http://documents.worldbank.org/curated/en/569341560173176277/pdf/Estimating-Poverty-in-India-without-Expenditure-Data-A-Survey-to-Survey-Imputation-Approach.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hai-Anh H. Dang & Peter F. Lanjouw & Umar Serajuddin, 2017. "Updating poverty estimates in the absence of regular and comparable consumption data: methods and illustration with reference to a middle-income country," Oxford Economic Papers, Oxford University Press, vol. 69(4), pages 939-962.
    2. Oaxaca, Ronald, 1973. "Male-Female Wage Differentials in Urban Labor Markets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(3), pages 693-709, October.
    3. Alan S. Blinder, 1973. "Wage Discrimination: Reduced Form and Structural Estimates," Journal of Human Resources, University of Wisconsin Press, vol. 8(4), pages 436-455.
    4. Angus Deaton and Jean Drèze & Jean Drèze, 2002. "Poverty and Inequality in India: A Reexamination," Working papers 107, Centre for Development Economics, Delhi School of Economics.
    5. Yoko Kijima & Lanjouw, Peter, 2003. "Poverty in India during the1990s - a regional perspective," Policy Research Working Paper Series 3141, The World Bank.
    6. Angus Deaton & Valerie Kozel, 2005. "Data and Dogma: The Great Indian Poverty Debate," The World Bank Research Observer, World Bank, vol. 20(2), pages 177-199.
    7. Chris Elbers & Jean O. Lanjouw & Peter Lanjouw, 2003. "Micro--Level Estimation of Poverty and Inequality," Econometrica, Econometric Society, vol. 71(1), pages 355-364, January.
    8. David Stifel & Luc Christiaensen, 2007. "Tracking Poverty Over Time in the Absence of Comparable Consumption Data," The World Bank Economic Review, World Bank, vol. 21(2), pages 317-341, June.
    9. Mohamed Douidich & Abdeljaouad Ezzrari & Roy Van der Weide & Paolo Verme, 2016. "Estimating Quarterly Poverty Rates Using Labor Force Surveys: A Primer," The World Bank Economic Review, World Bank, vol. 30(3), pages 475-500.
    10. Anton Korinek & Johan Mistiaen & Martin Ravallion, 2006. "Survey nonresponse and the distribution of income," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 4(1), pages 33-55, April.
    11. repec:pri:rpdevs:deaton_dreze_poverty_india is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prydz, Espen Beer & Jolliffe, Dean & Serajuddin, Umar, 2021. "Mind the Gap," GLO Discussion Paper Series 944, Global Labor Organization (GLO).
    2. Prydz,Espen Beer,Jolliffe,Dean Mitchell,Serajuddin,Umar, 2021. "Mind the Gap : Disparities in Assessments of Living Standards Using National Accounts and Household Surveys," Policy Research Working Paper Series 9779, The World Bank.
    3. Sinha Roy,Sutirtha & Van Der Weide,Roy, 2022. "Poverty in India Has Declined over the Last Decade But Not As Much As Previously Thought," Policy Research Working Paper Series 9994, The World Bank.
    4. Espen Beer Prydz & Dean Jolliffe & Umar Serajuddin, 2022. "Disparities in Assessments of Living Standards Using National Accounts and Household Surveys," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 68(S2), pages 385-420, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hai-Anh H. Dang & Peter F. Lanjouw & Umar Serajuddin, 2017. "Updating poverty estimates in the absence of regular and comparable consumption data: methods and illustration with reference to a middle-income country," Oxford Economic Papers, Oxford University Press, vol. 69(4), pages 939-962.
    2. Hai‐Anh Dang & Dean Jolliffe & Calogero Carletto, 2019. "Data Gaps, Data Incomparability, And Data Imputation: A Review Of Poverty Measurement Methods For Data‐Scarce Environments," Journal of Economic Surveys, Wiley Blackwell, vol. 33(3), pages 757-797, July.
    3. Hai-Anh H. Dang & Peter F. Lanjouw, 2023. "Regression-based imputation for poverty measurement in data-scarce settings," Chapters, in: Jacques Silber (ed.), Research Handbook on Measuring Poverty and Deprivation, chapter 13, pages 141-150, Edward Elgar Publishing.
    4. Dang,Hai-Anh H. & Kilic,Talip & Carletto,Calogero & Abanokova,Kseniya, 2021. "Poverty Imputation in Contexts without Consumption Data : A Revisit with Further Refinements," Policy Research Working Paper Series 9838, The World Bank.
    5. Hai-Anh H. Dang & Peter F. Lanjouw, 2018. "Poverty Dynamics in India between 2004 and 2012: Insights from Longitudinal Analysis Using Synthetic Panel Data," Economic Development and Cultural Change, University of Chicago Press, vol. 67(1), pages 131-170.
    6. F. Clementi & A. L. Dabalen & V. Molini & F. Schettino, 2017. "When the Centre Cannot Hold: Patterns of Polarization in Nigeria," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 63(4), pages 608-632, December.
    7. Hai‐Anh H. Dang, 2021. "To impute or not to impute, and how? A review of poverty‐estimation methods in the absence of consumption data," Development Policy Review, Overseas Development Institute, vol. 39(6), pages 1008-1030, November.
    8. Dang, Hai-Anh H & Lanjouw, Peter F., 2021. "Data Scarcity and Poverty Measurement," IZA Discussion Papers 14631, Institute of Labor Economics (IZA).
    9. Ahmed, Faizuddin & Dorji, Cheku & Takamatsu, Shinya & Yoshida, Nobuo, 2014. "Hybrid survey to improve the reliability of poverty statistics in a cost-effective manner," Policy Research Working Paper Series 6909, The World Bank.
    10. Dang,Hai-Anh H., 2018. "To impute or not to impute ? a review of alternative poverty estimation methods in the context of unavailable consumption data," Policy Research Working Paper Series 8403, The World Bank.
    11. Dang, Hai-Anh H & Kilic, Talip & Hlasny, Vladimir & Abanokova, Kseniya & Carletto, Calogero, 2024. "Using Survey-to-Survey Imputation to Fill Poverty Data Gaps at a Low Cost: Evidence from a Randomized Survey Experiment," IZA Discussion Papers 16792, Institute of Labor Economics (IZA).
    12. Luc Christiaensen & Peter Lanjouw & Jill Luoto & David Stifel, 2012. "Small area estimation-based prediction methods to track poverty: validation and applications," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 10(2), pages 267-297, June.
    13. Jinkook Lee & McGovern, Mark E. & David E. Bloom & P. Arokiasamy & Arun Risbud & Jennifer O?Brien & Varsha Kale & Peifeng Hu, 2015. "Education, Gender, and State-Level Gradients in the Health of Older Indians: Evidence from Biomarker Data," Working Paper 228841, Harvard University OpenScholar.
    14. Lee, Jinkook & McGovern, Mark E. & Bloom, David E. & Arokiasamy, P. & Risbud, Arun & O’Brien, Jennifer & Kale, Varsha & Hu, Peifeng, 2015. "Education, gender, and state-level disparities in the health of older Indians: Evidence from biomarker data," Economics & Human Biology, Elsevier, vol. 19(C), pages 145-156.
    15. World Bank, 2016. "Tunisia Poverty Assessment 2015," World Bank Publications - Reports 24410, The World Bank Group.
    16. repec:dgr:rugggd:gd-114 is not listed on IDEAS
    17. Dhongde, Shatakshee, 2017. "Measuring Segregation of the Poor: Evidence from India," World Development, Elsevier, vol. 89(C), pages 111-123.
    18. Theresa Beltramo & Hai-Anh Dang & Ibrahima Sarr & Paolo Verme, 2024. "Estimating poverty among refugee populations: a cross-survey imputation exercise for Chad," Oxford Development Studies, Taylor & Francis Journals, vol. 52(1), pages 94-113, January.
    19. Hai-Anh H. Dang & Talip Kilic & Ksenia Abanokova & Gero Carletto, 2024. "Imputing Poverty Indicators without Consumption Data : An Exploratory Analysis," Policy Research Working Paper Series 10867, The World Bank.
    20. L. Alan Winters & Shahid Yusuf, 2007. "Dancing with the Giants: China, India, and the Global Economy," World Bank Publications - Books, The World Bank Group, number 6632.
    21. Sarr, Ibrahima & Dang, Hai-Anh H & Gutierrez, Carlos Santiago Guzman & Beltramo, Theresa & Verme, Paolo, 2024. "Using Cross-Survey Imputation to Estimate Poverty for Venezuelan Refugees in Colombia," IZA Discussion Papers 17036, Institute of Labor Economics (IZA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wbk:wbrwps:8878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Roula I. Yazigi (email available below). General contact details of provider: https://edirc.repec.org/data/dvewbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.