IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v61y2014icp199-215.html
   My bibliography  Save this article

A choice experiment on alternative fuel vehicle preferences of private car owners in the Netherlands

Author

Listed:
  • Hoen, Anco
  • Koetse, Mark J.

Abstract

This paper presents results of an online stated choice experiment on preferences of Dutch private car owners for alternative fuel vehicles (AFVs) and their characteristics. Results show that negative preferences for alternative fuel vehicles are large, especially for the electric and fuel cell car, mostly as a result of their limited driving range and considerable refueling times. Preference for AFVs increases considerably with improvements on driving range, refueling time and fuel availability. Negative AFV preferences remain, however, also with substantial improvements in AFV characteristics; the remaining willingness to accept is on average € 10,000–€ 20,000 per AFV. Results from a mixed logit model show that consumer preferences for AFVs and AFV characteristics are heterogeneous to a large extent, in particular for the electric car, additional detour time and fuel time for the electric and fuel cell car. An interaction model reveals that annual mileage is by far the most important factor that determines heterogeneity in preferences for the electric and fuel cell car. When annual mileage increases, the preference for electric and fuel cell cars decreases substantially, whilst the willingness to pay for driving range increases substantially. Other variables such as using the car for holidays abroad and the daily commute also appear to be relevant for car choice.

Suggested Citation

  • Hoen, Anco & Koetse, Mark J., 2014. "A choice experiment on alternative fuel vehicle preferences of private car owners in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 199-215.
  • Handle: RePEc:eee:transa:v:61:y:2014:i:c:p:199-215
    DOI: 10.1016/j.tra.2014.01.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856414000184
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2014.01.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011. "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
    2. Fredrik Carlsson & Olof Johansson‐Stenman & Peter Martinsson, 2007. "Do You Enjoy Having More than Others? Survey Evidence of Positional Goods," Economica, London School of Economics and Political Science, vol. 74(296), pages 586-598, November.
    3. Bunch, David S. & Bradley, Mark & Golob, Thomas F. & Kitamura, Ryuichi & Occhiuzzo, Gareth P., 1993. "Demand for clean-fuel vehicles in California: A discrete-choice stated preference pilot project," Transportation Research Part A: Policy and Practice, Elsevier, vol. 27(3), pages 237-253, May.
    4. Bakker, Sjoerd, 2010. "The car industry and the blow-out of the hydrogen hype," Energy Policy, Elsevier, vol. 38(11), pages 6540-6544, November.
    5. Brownstone, David & Bunch, David S. & Train, Kenneth, 2000. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
    6. Horne, Matt & Jaccard, Mark & Tiedemann, Ken, 2005. "Improving behavioral realism in hybrid energy-economy models using discrete choice studies of personal transportation decisions," Energy Economics, Elsevier, vol. 27(1), pages 59-77, January.
    7. Dagsvik, John K. & Wennemo, Tom & Wetterwald, Dag G. & Aaberge, Rolf, 2002. "Potential demand for alternative fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 36(4), pages 361-384, May.
    8. Calfee, John E., 1985. "Estimating the demand for electric automobiles using fully disaggregated probabilistic choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 19(4), pages 287-301, August.
    9. Bunch, David S & Brownstone, David & Golob, Thomas F, 1995. "A Dynamic Forecasting System for Vehicle Markets with Clean-Fuel Vehicles," University of California Transportation Center, Working Papers qt0xs9c8p6, University of California Transportation Center.
    10. Caulfield, Brian & Farrell, Séona & McMahon, Brian, 2010. "Examining individuals preferences for hybrid electric and alternatively fuelled vehicles," Transport Policy, Elsevier, vol. 17(6), pages 381-387, November.
    11. Brownstone, David & Bunch, David S. & Train, Kenneth, 2000. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
    12. Matthew Beck & John Rose & David Hensher, 2011. "Behavioural responses to vehicle emissions charging," Transportation, Springer, vol. 38(3), pages 445-463, May.
    13. Hess, Stephane & Train, Kenneth E. & Polak, John W., 2006. "On the use of a Modified Latin Hypercube Sampling (MLHS) method in the estimation of a Mixed Logit Model for vehicle choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(2), pages 147-163, February.
    14. Ahn, Jiwoon & Jeong, Gicheol & Kim, Yeonbae, 2008. "A forecast of household ownership and use of alternative fuel vehicles: A multiple discrete-continuous choice approach," Energy Economics, Elsevier, vol. 30(5), pages 2091-2104, September.
    15. Ziegler, Andreas, 2012. "Individual characteristics and stated preferences for alternative energy sources and propulsion technologies in vehicles: A discrete choice analysis for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1372-1385.
    16. Beggs, S. & Cardell, S. & Hausman, J., 1981. "Assessing the potential demand for electric cars," Journal of Econometrics, Elsevier, vol. 17(1), pages 1-19, September.
    17. Mau, Paulus & Eyzaguirre, Jimena & Jaccard, Mark & Collins-Dodd, Colleen & Tiedemann, Kenneth, 2008. "The 'neighbor effect': Simulating dynamics in consumer preferences for new vehicle technologies," Ecological Economics, Elsevier, vol. 68(1-2), pages 504-516, December.
    18. Alexandros Dimitropoulos & Piet Rietveld & Jos N. van Ommeren, 2011. "Consumer Valuation of Driving Range: A Meta-Analysis," Tinbergen Institute Discussion Papers 11-133/3, Tinbergen Institute.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitropoulos, Alexandros & Rietveld, Piet & van Ommeren, Jos N., 2013. "Consumer valuation of changes in driving range: A meta-analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 55(C), pages 27-45.
    2. Gabriela D. Oliveira & Luis C. Dias, 2019. "Influence of Demographics on Consumer Preferences for Alternative Fuel Vehicles: A Review of Choice Modelling Studies and a Study in Portugal," Energies, MDPI, vol. 12(2), pages 1-33, January.
    3. Alexandros Dimitropoulos & Piet Rietveld & Jos N. van Ommeren, 2011. "Consumer Valuation of Driving Range: A Meta-Analysis," Tinbergen Institute Discussion Papers 11-133/3, Tinbergen Institute.
    4. Tanaka, Makoto & Ida, Takanori & Murakami, Kayo & Friedman, Lee, 2014. "Consumers’ willingness to pay for alternative fuel vehicles: A comparative discrete choice analysis between the US and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 194-209.
    5. Hackbarth, André & Madlener, Reinhard, 2011. "Consumer Preferences for Alternative Fuel Vehicles: A Discrete Choice Analysis," FCN Working Papers 20/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    6. Hackbarth, André & Madlener, Reinhard, 2016. "Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.
    7. Loría, Luis Enrique & Watson, Verity & Kiso, Takahiko & Phimister, Euan, 2019. "Investigating users' preferences for Low Emission Buses: Experiences from Europe's largest hydrogen bus fleet," Journal of choice modelling, Elsevier, vol. 32(C), pages 1-1.
    8. J�r�me Massiani, 2013. "The use of Stated Preferences to forecast alternative fuel vehicles market diffusion: Comparisons with other methods and proposal for a Synthetic Utility Function," Working Papers 2013:12, Department of Economics, University of Venice "Ca' Foscari".
    9. Takanori Ida & Kayo Murakami & Makoto Tanaka, 2012. "Keys to Smart Home Diffusion: A Stated Preference Analysis of Smart Meters, Photovoltaic Generation, and Electric/Hybrid Vehicles," Discussion papers e-11-011, Graduate School of Economics Project Center, Kyoto University.
    10. Petschnig, Martin & Heidenreich, Sven & Spieth, Patrick, 2014. "Innovative alternatives take action – Investigating determinants of alternative fuel vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 68-83.
    11. Zhang, Yong & Yu, Yifeng & Zou, Bai, 2011. "Analyzing public awareness and acceptance of alternative fuel vehicles in China: The case of EV," Energy Policy, Elsevier, vol. 39(11), pages 7015-7024.
    12. Parsons, George R. & Hidrue, Michael K. & Kempton, Willett & Gardner, Meryl P., 2014. "Willingness to pay for vehicle-to-grid (V2G) electric vehicles and their contract terms," Energy Economics, Elsevier, vol. 42(C), pages 313-324.
    13. J�r�me Massiani, 2013. "SP surveys for electric and alternative fuel vehicles: are we doing the right thing?," Working Papers 2013_01, Department of Economics, University of Venice "Ca' Foscari".
    14. Oliveira, Gabriela D. & Roth, Richard & Dias, Luis C., 2019. "Diffusion of alternative fuel vehicles considering dynamic preferences," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 83-99.
    15. Jose J. Soto & Victor Cantillo & Julian Arellana, 2018. "Incentivizing alternative fuel vehicles: the influence of transport policies, attitudes and perceptions," Transportation, Springer, vol. 45(6), pages 1721-1753, November.
    16. Milan Scasny & Milan Scasny & Iva Zverinova & Mikolaj Czajkowski, 2015. "Individual preference for the alternative fuel vehicles and their attributes in Poland," EcoMod2015 8575, EcoMod.
    17. Nie, Yu (Marco) & Ghamami, Mehrnaz & Zockaie, Ali & Xiao, Feng, 2016. "Optimization of incentive polices for plug-in electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 103-123.
    18. Thomas M. Fojcik & Heike Proff, 2014. "Accelerating market diffusion of battery electric vehicles through alternative mobility concepts," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 14(3/4), pages 347-368.
    19. Anders F. Jensen & Elisabetta Cherchi & Stefan L. Mabit & Juan de Dios Ortúzar, 2017. "Predicting the Potential Market for Electric Vehicles," Transportation Science, INFORMS, vol. 51(2), pages 427-440, May.
    20. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:61:y:2014:i:c:p:199-215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.