IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/11185.html
   My bibliography  Save this paper

A Damped Diffusion Framework for Financial Modeling and Closed-form Maximum Likelihood Estimation

Author

Listed:
  • Li, Minqiang

Abstract

Asset price bubbles can arise unintentionally when one uses continuous-time diffusion processes to model financial quantities. We propose a flexible damped diffusion framework that is able to break many types of bubbles and preserve the martingale pricing approach. Damping can be done on either the diffusion or drift function. Oftentimes, certain solutions to the valuation PDE can be ruled out by requiring the solution to be a limit of martingale prices for damped diffusion models. Monte Carlo study shows that with finite time-series length, maximum likelihood estimation often fails to detect the damped diffusion function while fabricates nonlinear drift function.

Suggested Citation

  • Li, Minqiang, 2008. "A Damped Diffusion Framework for Financial Modeling and Closed-form Maximum Likelihood Estimation," MPRA Paper 11185, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:11185
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/11185/3/MPRA_paper_11185.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ait-Sahalia, Yacine, 1996. "Testing Continuous-Time Models of the Spot Interest Rate," The Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 385-426.
    2. Emanuel, David C. & MacBeth, James D., 1982. "Further Results on the Constant Elasticity of Variance Call Option Pricing Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(4), pages 533-554, November.
    3. Yacine Aït-Sahalia, 2001. "Transition Densities For Interest Rate And Other Nonlinear Diffusions," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II), chapter 1, pages 1-34, World Scientific Publishing Co. Pte. Ltd..
    4. Steven L. Heston & Mark Loewenstein & Gregory A. Willard, 2007. "Options and Bubbles," The Review of Financial Studies, Society for Financial Studies, vol. 20(2), pages 359-390.
    5. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    6. Beckers, Stan, 1980. "The Constant Elasticity of Variance Model and Its Implications for Option Pricing," Journal of Finance, American Finance Association, vol. 35(3), pages 661-673, June.
    7. David A. Chapman & Neil D. Pearson, 2000. "Is the Short Rate Drift Actually Nonlinear?," Journal of Finance, American Finance Association, vol. 55(1), pages 355-388, February.
    8. Levy, Moshe, 2008. "Stock market crashes as social phase transitions," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 137-155, January.
    9. Bali, Turan G. & Wu, Liuren, 2006. "A comprehensive analysis of the short-term interest-rate dynamics," Journal of Banking & Finance, Elsevier, vol. 30(4), pages 1269-1290, April.
    10. David A. Chapman & Neil D. Pearson, 1998. "Is the Short Rate Drift Actually Nonlinear?," Finance 9808005, University Library of Munich, Germany.
    11. Conley, Timothy G, et al, 1997. "Short-Term Interest Rates as Subordinated Diffusions," The Review of Financial Studies, Society for Financial Studies, vol. 10(3), pages 525-577.
    12. Alexander Cox & David Hobson, 2005. "Local martingales, bubbles and option prices," Finance and Stochastics, Springer, vol. 9(4), pages 477-492, October.
    13. Kirman, Alan & Teyssiere, Gilles, 2005. "Testing for bubbles and change-points," Journal of Economic Dynamics and Control, Elsevier, vol. 29(4), pages 765-799, April.
    14. Ait-Sahalia, Yacine, 1996. "Nonparametric Pricing of Interest Rate Derivative Securities," Econometrica, Econometric Society, vol. 64(3), pages 527-560, May.
    15. Leif Andersen & Jesper Andreasen, 2000. "Volatility skews and extensions of the Libor market model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 7(1), pages 1-32.
    16. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    17. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
    18. Cheridito, Patrick & Filipovic, Damir & Kimmel, Robert L., 2007. "Market price of risk specifications for affine models: Theory and evidence," Journal of Financial Economics, Elsevier, vol. 83(1), pages 123-170, January.
    19. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
    20. Li, Minqiang & Pearson, Neil D. & Poteshman, Allen M., 2004. "Conditional estimation of diffusion processes," Journal of Financial Economics, Elsevier, vol. 74(1), pages 31-66, October.
    21. Christopher S. Jones, 2003. "Nonlinear Mean Reversion in the Short-Term Interest Rate," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 793-843, July.
    22. Kirchler, Michael, 2009. "Underreaction to fundamental information and asymmetry in mispricing between bullish and bearish markets. An experimental study," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 491-506, February.
    23. Chan, K C, et al, 1992. "An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    24. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    25. repec:bla:jfinan:v:44:y:1989:i:1:p:211-19 is not listed on IDEAS
    26. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    27. Manuel Arapis & Jiti Gao, 2006. "Empirical Comparisons in Short-Term Interest Rate Models Using Nonparametric Methods," Journal of Financial Econometrics, Oxford University Press, vol. 4(2), pages 310-345.
    28. Boyle, Phelim P. & Tian, Yisong “Sam”, 1999. "Pricing Lookback and Barrier Options under the CEV Process," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(2), pages 241-264, June.
    29. Ai[diaeresis]t-Sahalia, Yacine & Kimmel, Robert, 2007. "Maximum likelihood estimation of stochastic volatility models," Journal of Financial Economics, Elsevier, vol. 83(2), pages 413-452, February.
    30. Bakshi, Gurdip & Ju, Nengjiu & Ou-Yang, Hui, 2006. "Estimation of continuous-time models with an application to equity volatility dynamics," Journal of Financial Economics, Elsevier, vol. 82(1), pages 227-249, October.
    31. Fernandes, Marcelo, 2006. "Financial crashes as endogenous jumps: estimation, testing and forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 30(1), pages 111-141, January.
    32. Diebold, Francis X., 1988. "Testing for bubbles, reflecting barriers and other anomalies," Journal of Economic Dynamics and Control, Elsevier, vol. 12(1), pages 63-70, March.
    33. Friedman, Daniel & Abraham, Ralph, 2009. "Bubbles and crashes: Gradient dynamics in financial markets," Journal of Economic Dynamics and Control, Elsevier, vol. 33(4), pages 922-937, April.
    34. Durham, Garland B., 2003. "Likelihood-based specification analysis of continuous-time models of the short-term interest rate," Journal of Financial Economics, Elsevier, vol. 70(3), pages 463-487, December.
    35. Yacine Ait-Sahalia, 2002. "Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed-form Approximation Approach," Econometrica, Econometric Society, vol. 70(1), pages 223-262, January.
    36. Chacko, George & Viceira, Luis M., 2003. "Spectral GMM estimation of continuous-time processes," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 259-292.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Albrecher, Hansjoerg & Guillaume, Florence & Schoutens, Wim, 2013. "Implied liquidity: Model sensitivity," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 48-67.
    2. Choi, Seungmoon, 2013. "Closed-form likelihood expansions for multivariate time-inhomogeneous diffusions," Journal of Econometrics, Elsevier, vol. 174(2), pages 45-65.
    3. Choi, Seungmoon, 2018. "Comparison of the Korean and US Stock Markets Using Continuous-time Stochastic Volatility Models," KDI Journal of Economic Policy, Korea Development Institute (KDI), vol. 40(4), pages 1-22.
    4. Lee, Yoon Dong & Song, Seongjoo & Lee, Eun-Kyung, 2014. "The delta expansion for the transition density of diffusion models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 694-705.
    5. Choi, Seungmoon, 2015. "Explicit form of approximate transition probability density functions of diffusion processes," Journal of Econometrics, Elsevier, vol. 187(1), pages 57-73.
    6. Li, Minqiang, 2013. "An examination of the continuous-time dynamics of international volatility indices amid the recent market turmoil," Journal of Empirical Finance, Elsevier, vol. 22(C), pages 128-139.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Lili & Swanson, Norman R., 2011. "In- and out-of-sample specification analysis of spot rate models: Further evidence for the period 1982-2008," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 743-764, September.
    2. Shane Miller, 2007. "Pricing of Contingent Claims Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2007, January-A.
    3. Shane Miller, 2007. "Pricing of Contingent Claims Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 25, July-Dece.
    4. Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2007. "Indirect robust estimation of the short-term interest rate process," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 546-563, September.
    5. Song, Zhaogang, 2011. "A martingale approach for testing diffusion models based on infinitesimal operator," Journal of Econometrics, Elsevier, vol. 162(2), pages 189-212, June.
    6. Zongwu Cai & Yongmiao Hong, 2013. "Some Recent Developments in Nonparametric Finance," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    7. repec:wyi:journl:002108 is not listed on IDEAS
    8. Hou, Ai Jun & Suardi, Sandy, 2011. "Modelling and forecasting short-term interest rate volatility: A semiparametric approach," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 692-710, September.
    9. Jianqing Fan, 2004. "A selective overview of nonparametric methods in financial econometrics," Papers math/0411034, arXiv.org.
    10. repec:wyi:journl:002109 is not listed on IDEAS
    11. Bandi, Federico M., 2002. "Short-term interest rate dynamics: a spatial approach," Journal of Financial Economics, Elsevier, vol. 65(1), pages 73-110, July.
    12. Durham, Garland B., 2003. "Likelihood-based specification analysis of continuous-time models of the short-term interest rate," Journal of Financial Economics, Elsevier, vol. 70(3), pages 463-487, December.
    13. Aït-Sahalia, Yacine & Kimmel, Robert L., 2010. "Estimating affine multifactor term structure models using closed-form likelihood expansions," Journal of Financial Economics, Elsevier, vol. 98(1), pages 113-144, October.
    14. Kristensen, Dennis & Mele, Antonio, 2011. "Adding and subtracting Black-Scholes: A new approach to approximating derivative prices in continuous-time models," Journal of Financial Economics, Elsevier, vol. 102(2), pages 390-415.
    15. Li, Minqiang & Pearson, Neil D. & Poteshman, Allen M., 2004. "Conditional estimation of diffusion processes," Journal of Financial Economics, Elsevier, vol. 74(1), pages 31-66, October.
    16. Cai, Zongwu & Hong, Yongmiao, 2003. "Nonparametric Methods in Continuous-Time Finance: A Selective Review," SFB 373 Discussion Papers 2003,15, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    17. Christiansen, Charlotte, 2010. "Mean reversion in US and international short rates," The North American Journal of Economics and Finance, Elsevier, vol. 21(3), pages 286-296, December.
    18. Tao Zou & Song Xi Chen, 2017. "Enhancing Estimation for Interest Rate Diffusion Models With Bond Prices," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 486-498, July.
    19. Al-Zoubi, Haitham A., 2009. "Short-term spot rate models with nonparametric deterministic drift," The Quarterly Review of Economics and Finance, Elsevier, vol. 49(3), pages 731-747, August.
    20. Koo, Bonsoo & Linton, Oliver, 2012. "Estimation of semiparametric locally stationary diffusion models," Journal of Econometrics, Elsevier, vol. 170(1), pages 210-233.
    21. Muteba Mwamba, John & Thabo, Lethaba & Uwilingiye, Josine, 2014. "Modelling the short-term interest rate with stochastic differential equation in continuous time: linear and nonlinear models," MPRA Paper 64386, University Library of Munich, Germany.
    22. Li, Minqiang, 2013. "An examination of the continuous-time dynamics of international volatility indices amid the recent market turmoil," Journal of Empirical Finance, Elsevier, vol. 22(C), pages 128-139.

    More about this item

    Keywords

    Damped diffusion; asset price bubbles; martingale pricing; maximum likelihood estimation;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:11185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.