IDEAS home Printed from https://ideas.repec.org/p/usg/dp2010/2010-32.html
   My bibliography  Save this paper

Option data and modeling BSM implied volatility

Author

Listed:
  • Matthias Fengler

Abstract

This contribution to the Handbook of Computational Finance, Springer-Verlag, gives an overview on modeling implied volatility data. After introducing the concept of Black-Scholes-Merton implied volatility (IV), the empirical stylized facts of IV data are reviewed. We then discuss recent results on IV surface dynamics and the computational aspects of IV. The main focus is on various parametric, semi- and nonparametric modeling strategies for IV data, including ones which respect no-arbitrage bounds.

Suggested Citation

  • Matthias Fengler, 2010. "Option data and modeling BSM implied volatility," University of St. Gallen Department of Economics working paper series 2010 2010-32, Department of Economics, University of St. Gallen.
  • Handle: RePEc:usg:dp2010:2010-32
    as

    Download full text from publisher

    File URL: http://ux-tauri.unisg.ch/RePEc/usg/dp2010/DP-1032-Fe.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark Britten‐Jones & Anthony Neuberger, 2000. "Option Prices, Implied Price Processes, and Stochastic Volatility," Journal of Finance, American Finance Association, vol. 55(2), pages 839-866, April.
    2. Rama Cont & Jose da Fonseca, 2002. "Dynamics of implied volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 45-60.
    3. Peter Carr & Liuren Wu, 2003. "The Finite Moment Log Stable Process and Option Pricing," Journal of Finance, American Finance Association, vol. 58(2), pages 753-777, April.
    4. Steven P. Feinstein, 1988. "A source of unbiased implied volatility forecasts," FRB Atlanta Working Paper 88-9, Federal Reserve Bank of Atlanta.
    5. Corrado, Charles J. & Miller, Thomas Jr., 1996. "A note on a simple, accurate formula to compute implied standard deviations," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 595-603, April.
    6. repec:bla:jfinan:v:58:y:2003:i:2:p:753-778 is not listed on IDEAS
    7. M. Benko & M. Fengler & W. Härdle & M. Kopa, 2007. "On extracting information implied in options," Computational Statistics, Springer, vol. 22(4), pages 543-553, December.
    8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    9. repec:bla:jfinan:v:53:y:1998:i:6:p:2059-2106 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Noshaba Zulfiqar & Saqib Gulzar, 2021. "Implied volatility estimation of bitcoin options and the stylized facts of option pricing," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
    2. Wolfgang Karl Härdle & Yarema Okhrin & Weining Wang, 2015. "Uniform Confidence Bands for Pricing Kernels," Journal of Financial Econometrics, Oxford University Press, vol. 13(2), pages 376-413.
    3. Cristian Homescu, 2011. "Implied Volatility Surface: Construction Methodologies and Characteristics," Papers 1107.1834, arXiv.org.
    4. Gentle, James E. & Härdle, Wolfgang Karl, 2010. "Modeling asset prices," SFB 649 Discussion Papers 2010-031, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. Bo Zhao & Stewart Hodges, 2013. "Parametric modeling of implied smile functions: a generalized SVI model," Review of Derivatives Research, Springer, vol. 16(1), pages 53-77, April.
    6. repec:hum:wpaper:sfb649dp2010-003 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    2. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2020. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Papers 2006.15312, arXiv.org, revised May 2022.
    3. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    4. Jingzhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes," Finance 0401002, University Library of Munich, Germany.
    5. Minqiang Li & Kyuseok Lee, 2011. "An adaptive successive over-relaxation method for computing the Black-Scholes implied volatility," Quantitative Finance, Taylor & Francis Journals, vol. 11(8), pages 1245-1269.
    6. Fengler, Matthias & Hin, Lin-Yee, 2011. "Semi-nonparametric estimation of the call price surface under strike and time-to-expiry no-arbitrage constraints," Economics Working Paper Series 1136, University of St. Gallen, School of Economics and Political Science, revised May 2013.
    7. Noshaba Zulfiqar & Saqib Gulzar, 2021. "Implied volatility estimation of bitcoin options and the stylized facts of option pricing," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
    8. Nawalkha, Sanjay K & Zhuo, Xiaoyang, 2020. "A Theory of Equivalent Expectation Measures for Expected Prices of Contingent Claims," OSF Preprints hsxtu, Center for Open Science.
    9. Maciak, Matúš, 2021. "Quantile LASSO with changepoints in panel data models applied to option pricing," Econometrics and Statistics, Elsevier, vol. 20(C), pages 166-175.
    10. Jianhui Li & Sebastian A. Gehricke & Jin E. Zhang, 2019. "How do US options traders “smirk” on China? Evidence from FXI options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(11), pages 1450-1470, November.
    11. Toby Daglish & John Hull & Wulin Suo, 2007. "Volatility surfaces: theory, rules of thumb, and empirical evidence," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 507-524.
    12. Butler, J. S. & Schachter, Barry, 1996. "The statistical properties of parameters inferred from the black-scholes formula," International Review of Financial Analysis, Elsevier, vol. 5(3), pages 223-235.
    13. Li, Minqiang, 2008. "Approximate inversion of the Black-Scholes formula using rational functions," European Journal of Operational Research, Elsevier, vol. 185(2), pages 743-759, March.
    14. Kazuhiko NISHINA & Tatsuro Nabil MAGHREBI & Moo-Sung KIM, 2006. "Stock Market Volatility And The Forecasting Accuracy Of Implied Volatility Indices," Discussion Papers in Economics and Business 06-09, Osaka University, Graduate School of Economics.
    15. Connor J.A. Stuart & Sebastian A. Gehricke & Jin E. Zhang & Xinfeng Ruan, 2021. "Implied volatility smirk in the Australian dollar market," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(3), pages 4573-4599, September.
    16. Sebastiano Vitali & Miloš Kopa & Gabriele Giana, 2023. "Implied volatility smoothing at COVID-19 times," Computational Management Science, Springer, vol. 20(1), pages 1-42, December.
    17. Miloš Kopa & Sebastiano Vitali & Tomáš Tichý & Radek Hendrych, 2017. "Implied volatility and state price density estimation: arbitrage analysis," Computational Management Science, Springer, vol. 14(4), pages 559-583, October.
    18. Maciak, Matúš, 2021. "Quantile LASSO in arbitrage-free option markets," Econometrics and Statistics, Elsevier, vol. 18(C), pages 106-116.
    19. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    20. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.

    More about this item

    Keywords

    Implied volatility;

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:usg:dp2010:2010-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Martina Flockerzi (email available below). General contact details of provider: https://edirc.repec.org/data/vwasgch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.