IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v11y2011i8p1245-1269.html
   My bibliography  Save this article

An adaptive successive over-relaxation method for computing the Black-Scholes implied volatility

Author

Listed:
  • Minqiang Li
  • Kyuseok Lee

Abstract

A new successive over-relaxation method to compute the Black-Scholes implied volatility is introduced. Properties of the new method are fully analysed, including global well-definedness, local convergence, as well as global convergence. Quadratic order of convergence is achieved by either a dynamic relaxation or transformation of sequence technique. The method is further enhanced by introducing a rational approximation on initial values. Numerical implementation shows that uniformly in a very large domain, the new method converges to the true implied volatility with very few iterations. Overall, the new method achieves a very good combination of efficiency, accuracy and robustness.

Suggested Citation

  • Minqiang Li & Kyuseok Lee, 2011. "An adaptive successive over-relaxation method for computing the Black-Scholes implied volatility," Quantitative Finance, Taylor & Francis Journals, vol. 11(8), pages 1245-1269.
  • Handle: RePEc:taf:quantf:v:11:y:2011:i:8:p:1245-1269
    DOI: 10.1080/14697680902849361
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680902849361
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680902849361?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter Carr & Liuren Wu, 2003. "The Finite Moment Log Stable Process and Option Pricing," Journal of Finance, American Finance Association, vol. 58(2), pages 753-777, April.
    2. Michael A. Kelly, 2006. "Faster Implied Volatilities via the Implicit Function Theorem," The Financial Review, Eastern Finance Association, vol. 41(4), pages 589-597, November.
    3. Geske, Robert, 1979. "The valuation of compound options," Journal of Financial Economics, Elsevier, vol. 7(1), pages 63-81, March.
    4. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    5. Chance, Don M, 1996. "A Generalized Simple Formula to Compute the Implied Volatility," The Financial Review, Eastern Finance Association, vol. 31(4), pages 859-867, November.
    6. Corrado, Charles J. & Miller, Thomas Jr., 1996. "A note on a simple, accurate formula to compute implied standard deviations," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 595-603, April.
    7. Geske, Robert, 1977. "The Valuation of Corporate Liabilities as Compound Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 541-552, November.
    8. Minqiang Li, 2008. "The impact of return nonnormality on exchange options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(9), pages 845-870, September.
    9. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    10. Chambers, Donald R & Nawalkha, Sanjay K, 2001. "An Improved Approach to Computing Implied Volatility," The Financial Review, Eastern Finance Association, vol. 36(3), pages 89-99, August.
    11. Fischer, Stanley, 1978. "Call Option Pricing when the Exercise Price Is Uncertain, and the Valuation of Index Bonds," Journal of Finance, American Finance Association, vol. 33(1), pages 169-176, March.
    12. repec:bla:jfinan:v:58:y:2003:i:2:p:753-778 is not listed on IDEAS
    13. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    14. Li, Minqiang, 2008. "Approximate inversion of the Black-Scholes formula using rational functions," European Journal of Operational Research, Elsevier, vol. 185(2), pages 743-759, March.
    15. Latane, Henry A & Rendleman, Richard J, Jr, 1976. "Standard Deviations of Stock Price Ratios Implied in Option Prices," Journal of Finance, American Finance Association, vol. 31(2), pages 369-381, May.
    16. Jaehyuk Choi & Kwangmoon Kim & Minsuk Kwak, 2009. "Numerical Approximation of the Implied Volatility Under Arithmetic Brownian Motion," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(3), pages 261-268.
    17. Schmalensee, Richard & Trippi, Robert R, 1978. "Common Stock Volatility Expectations Implied by Option Premia," Journal of Finance, American Finance Association, vol. 33(1), pages 129-147, March.
    18. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    19. Margrabe, William, 1978. "The Value of an Option to Exchange One Asset for Another," Journal of Finance, American Finance Association, vol. 33(1), pages 177-186, March.
    20. Gukhal, C.R.Chandrasekhar Reddy, 2004. "The compound option approach to American options on jump-diffusions," Journal of Economic Dynamics and Control, Elsevier, vol. 28(10), pages 2055-2074, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabien Le Floc’h & Cornelis W. Oosterlee, 2019. "Model-Free Stochastic Collocation for an Arbitrage-Free Implied Volatility, Part II," Risks, MDPI, vol. 7(1), pages 1-21, March.
    2. Don M. Chance & Thomas A. Hanson & Weiping Li & Jayaram Muthuswamy, 2017. "A bias in the volatility smile," Review of Derivatives Research, Springer, vol. 20(1), pages 47-90, April.
    3. Jaehyuk Choi & Jeonggyu Huh & Nan Su, 2023. "Tighter 'uniform bounds for Black-Scholes implied volatility' and the applications to root-finding," Papers 2302.08758, arXiv.org, revised Oct 2024.
    4. Dan Stefanica & Radoš Radoičić, 2017. "An Explicit Implied Volatility Formula," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-32, November.
    5. Liu, Yi-Fang & Zhang, Wei & Xu, Hai-Chuan, 2014. "Collective behavior and options volatility smile: An agent-based explanation," Economic Modelling, Elsevier, vol. 39(C), pages 232-239.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Don M. Chance & Thomas A. Hanson & Weiping Li & Jayaram Muthuswamy, 2017. "A bias in the volatility smile," Review of Derivatives Research, Springer, vol. 20(1), pages 47-90, April.
    2. Kwangil Bae, 2019. "Valuation and applications of compound basket options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(6), pages 704-720, June.
    3. Dan Stefanica & Radoš Radoičić, 2017. "An Explicit Implied Volatility Formula," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-32, November.
    4. Li, Minqiang, 2008. "Approximate inversion of the Black-Scholes formula using rational functions," European Journal of Operational Research, Elsevier, vol. 185(2), pages 743-759, March.
    5. Sukhomlin, Nikolay & Santana Jiménez, Lisette Josefina, 2010. "Problema de calibración de mercado y estructura implícita del modelo de bonos de Black-Cox = Market Calibration Problem and the Implied Structure of the Black-Cox Bond Model," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 10(1), pages 73-98, December.
    6. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    7. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    8. Steven Li, 2003. "The estimation of implied volatility from the Black-Scholes model: some new formulas and their applications," School of Economics and Finance Discussion Papers and Working Papers Series 141, School of Economics and Finance, Queensland University of Technology.
    9. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, August.
    10. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, March.
    11. Michele Mininni & Giuseppe Orlando & Giovanni Taglialatela, 2021. "Challenges in approximating the Black and Scholes call formula with hyperbolic tangents," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 73-100, June.
    12. Noshaba Zulfiqar & Saqib Gulzar, 2021. "Implied volatility estimation of bitcoin options and the stylized facts of option pricing," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
    13. Yepes Rodri­guez, Ramón, 2008. "Real option valuation of free destination in long-term liquefied natural gas supplies," Energy Economics, Elsevier, vol. 30(4), pages 1909-1932, July.
    14. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    15. Liu, Yu-hong & Jiang, I-Ming & Hsu, Wei-tze, 2018. "Compound option pricing under a double exponential Jump-diffusion model," The North American Journal of Economics and Finance, Elsevier, vol. 43(C), pages 30-53.
    16. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2022. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Journal of Finance, American Finance Association, vol. 77(5), pages 2853-2906, October.
    17. Philipp N. Baecker, 2007. "Real Options and Intellectual Property," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-48264-2, July.
    18. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    19. Yibing Chen & Cheng-Few Lee & John Lee & Jow-Ran Chang, 2018. "Alternative Methods to Estimate Implied Variance: Review and Comparison," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 1-28, December.
    20. Dominique Guegan & Jing Zhang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," PSE-Ecole d'économie de Paris (Postprint) halshs-00368336, HAL.

    More about this item

    Keywords

    Successive over-relaxation; Black-Scholes formula; Implied volatility; Rational approximation;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:11:y:2011:i:8:p:1245-1269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.