IDEAS home Printed from https://ideas.repec.org/p/osk/wpaper/0609.html
   My bibliography  Save this paper

Stock Market Volatility And The Forecasting Accuracy Of Implied Volatility Indices

Author

Listed:
  • Kazuhiko NISHINA

    (Graduate School of Economics, Osaka University)

  • Tatsuro Nabil MAGHREBI

    (Faculty of Economics, Wakayama University)

  • Moo-Sung KIM

    (College of Business Administration, Pusan National University)

Abstract

This study develops a new model-free benchmark of implied volatility for the Japanese stock market similar in construction to the new VIX based on the S&P 500 index. It also examines the stochastic dynamics of the implied volatility index and its relationship with realized volatility in both markets. There is evidence that implied volatility is governed by a long-memory process. Despite its upward bias, implied volatility is more reflective of changes in realized volatility than alternative GARCH models, which account for volatility persistence and the asymmetric impact of news. The implied volatility index is also found to be inclusive of some but not all information on future volatility contained in historical returns. However, its higher out-of sample performance provides further support to the rationale behind drawing inference about future stock market volatility based on the incremental information contained in options prices.

Suggested Citation

  • Kazuhiko NISHINA & Tatsuro Nabil MAGHREBI & Moo-Sung KIM, 2006. "Stock Market Volatility And The Forecasting Accuracy Of Implied Volatility Indices," Discussion Papers in Economics and Business 06-09, Osaka University, Graduate School of Economics.
  • Handle: RePEc:osk:wpaper:0609
    as

    Download full text from publisher

    File URL: http://www2.econ.osaka-u.ac.jp/library/global/dp/0609.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark Britten‐Jones & Anthony Neuberger, 2000. "Option Prices, Implied Price Processes, and Stochastic Volatility," Journal of Finance, American Finance Association, vol. 55(2), pages 839-866, April.
    2. Yacine Aït-Sahalia & Andrew W. Lo, "undated". "Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices," CRSP working papers 332, Center for Research in Security Prices, Graduate School of Business, University of Chicago.
    3. Canina, Linda & Figlewski, Stephen, 1993. "The Informational Content of Implied Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 659-681.
    4. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    5. Blair, Bevan J. & Poon, Ser-Huang & Taylor, Stephen J., 2001. "Forecasting S&P 100 volatility: the incremental information content of implied volatilities and high-frequency index returns," Journal of Econometrics, Elsevier, vol. 105(1), pages 5-26, November.
    6. Ball, Clifford A. & Roma, Antonio, 1994. "Stochastic Volatility Option Pricing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 29(4), pages 589-607, December.
    7. Corrado, Charles J. & Miller, Thomas Jr., 1996. "A note on a simple, accurate formula to compute implied standard deviations," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 595-603, April.
    8. repec:bla:jfinan:v:53:y:1998:i:2:p:499-547 is not listed on IDEAS
    9. Chambers, Donald R & Nawalkha, Sanjay K, 2001. "An Improved Approach to Computing Implied Volatility," The Financial Review, Eastern Finance Association, vol. 36(3), pages 89-99, August.
    10. Amin, Kaushik I & Ng, Victor K, 1997. "Inferring Future Volatility from the Information in Implied Volatility in Eurodollar Options: A New Approach," The Review of Financial Studies, Society for Financial Studies, vol. 10(2), pages 333-367.
    11. Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Costas Siriopoulos & Athanasios Fassas, 2013. "Dynamic relations of uncertainty expectations: a conditional assessment of implied volatility indices," Review of Derivatives Research, Springer, vol. 16(3), pages 233-266, October.
    2. Bekiros, Stelios & Jlassi, Mouna & Naoui, Kamel & Uddin, Gazi Salah, 2017. "The asymmetric relationship between returns and implied volatility: Evidence from global stock markets," Journal of Financial Stability, Elsevier, vol. 30(C), pages 156-174.
    3. Bollerslev, Tim & Marrone, James & Xu, Lai & Zhou, Hao, 2014. "Stock Return Predictability and Variance Risk Premia: Statistical Inference and International Evidence," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(3), pages 633-661, June.
    4. Hiroyuki Okawa, 2023. "Markov-Regime Switches in Oil Markets: The Fear Factor Dynamics," JRFM, MDPI, vol. 16(2), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    2. Kazuhiko Nishina & Nabil Maghrebi & Mark J. Holmes, 2006. "Are Volatility Expectations Characterized By Regime Shifts? Evidence From Implied Volatility Indices," Discussion Papers in Economics and Business 06-20, Osaka University, Graduate School of Economics.
    3. Vogel, Harold L. & Werner, Richard A., 2015. "An analytical review of volatility metrics for bubbles and crashes," International Review of Financial Analysis, Elsevier, vol. 38(C), pages 15-28.
    4. Chernov, Mikhail, 2007. "On the Role of Risk Premia in Volatility Forecasting," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 411-426, October.
    5. Peter Carr & Liuren Wu, 2004. "Variance Risk Premia," Finance 0409015, University Library of Munich, Germany.
    6. Busch, Thomas & Christensen, Bent Jesper & Nielsen, Morten Ørregaard, 2011. "The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets," Journal of Econometrics, Elsevier, vol. 160(1), pages 48-57, January.
    7. Wilkens, Sascha & Roder, Klaus, 2006. "The informational content of option-implied distributions: Evidence from the Eurex index and interest rate futures options market," Global Finance Journal, Elsevier, vol. 17(1), pages 50-74, September.
    8. Benjamin Miranda Tabak & Sandro Canesso de Andrade & Eui Jung Chang, 2004. "Tracking Brazilian Exchange Rate Volatility," Econometric Society 2004 Far Eastern Meetings 487, Econometric Society.
    9. Markose, Sheri M & Peng, Yue & Alentorn, Amadeo, 2012. "Forecasting Extreme Volatility of FTSE-100 With Model Free VFTSE, Carr-Wu and Generalized Extreme Value (GEV) Option Implied Volatility Indices," Economics Discussion Papers 3713, University of Essex, Department of Economics.
    10. Gael M. Martin & Andrew Reidy & Jill Wright, 2009. "Does the option market produce superior forecasts of noise-corrected volatility measures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(1), pages 77-104.
    11. Taylor, Stephen J. & Yadav, Pradeep K. & Zhang, Yuanyuan, 2009. "The information content of implied volatilities and model-free volatility expectations: Evidence from options written on individual stocks," CFR Working Papers 09-07, University of Cologne, Centre for Financial Research (CFR).
    12. Bali, Turan G. & Weinbaum, David, 2007. "A conditional extreme value volatility estimator based on high-frequency returns," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 361-397, February.
    13. Bams, Dennis & Blanchard, Gildas & Lehnert, Thorsten, 2017. "Volatility measures and Value-at-Risk," International Journal of Forecasting, Elsevier, vol. 33(4), pages 848-863.
    14. Mircea ASANDULUI, 2012. "A Multi-Horizon Comparison Of Volatility Forecasts: An Application To Stock Options Traded At Euronext Exchange Amsterdam," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 10, pages 179-190, December.
    15. Peter Christoffersen & Kris Jacobs & Gregory Vainberg, 2007. "Forward-Looking Betas," CREATES Research Papers 2007-39, Department of Economics and Business Economics, Aarhus University.
    16. Barunik, Jozef & Barunikova, Michaela, 2015. "Revisiting the long memory dynamics of implied-realized volatility relation: A new evidence from wavelet band spectrum regression," FinMaP-Working Papers 43, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    17. Weiwei ZHANG & Tiezhu SUN & Yechi MA & Zilong WANG, 2021. "New Evidence on the Information Content of Implied Volatility of S&P 500: Model-Free versus Model-Based," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 109-121, December.
    18. Giulio, Cifarelli, 2004. "Yes, implied volatilities are not informationally efficient: an empirical estimate using options on interest rate futures contracts," MPRA Paper 28655, University Library of Munich, Germany.
    19. Tsiaras, Leonidas, 2009. "The Forecast Performance of Competing Implied Volatility Measures: The Case of Individual Stocks," Finance Research Group Working Papers F-2009-02, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    20. Fernandes, Marcelo & Medeiros, Marcelo C. & Scharth, Marcel, 2014. "Modeling and predicting the CBOE market volatility index," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 1-10.

    More about this item

    Keywords

    Licensing; Implied volatility index; Out-of-sample forecasting; GARCH modelling;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osk:wpaper:0609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: The Economic Society of Osaka University (email available below). General contact details of provider: https://edirc.repec.org/data/feosujp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.