IDEAS home Printed from https://ideas.repec.org/p/unl/unlfep/wp500.html
   My bibliography  Save this paper

One - memory in repeated games

Author

Listed:
  • Mehmet Barlo
  • Guilherme Carmona

Abstract

We study the extent to which equilibrium payoffs of discounted repeated games can be obtained by 1 - memory strategies. First, we present robust examples of games in which there is a subgame perfect equilibrium payoff profile that cannot be obtained by any 1 - memory subgame perfect equilibrium. Then, a complete characterization of 1 - memory simple strategies is provided, and it is employed to establish the following in games with more than two players each having connected action spaces: 1. all subgame perfect equilibrium payo®s can be approximately supported by an " - subgame perfect equilibrium strategy of 1 - memory, 2. all strictly enforceable subgame perfect equilibrium payoffs can be approximately supported by a 1 - memory subgame equilibrium, and 3. the subgame perfect Folk Theorem holds for 1 - memory strategies. While no further restrictions are needed for the third result to hold in 2 - player games, an additional restriction is needed for the first two: players must have common punishments.

Suggested Citation

  • Mehmet Barlo & Guilherme Carmona, 2007. "One - memory in repeated games," Nova SBE Working Paper Series wp500, Universidade Nova de Lisboa, Nova School of Business and Economics.
  • Handle: RePEc:unl:unlfep:wp500
    as

    Download full text from publisher

    File URL: https://run.unl.pt/bitstream/10362/82858/1/WP500.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bhaskar, V. & Vega-Redondo, Fernando, 2002. "Asynchronous Choice and Markov Equilibria," Journal of Economic Theory, Elsevier, vol. 103(2), pages 334-350, April.
    2. Aumann, Robert J. & Sorin, Sylvain, 1989. "Cooperation and bounded recall," Games and Economic Behavior, Elsevier, vol. 1(1), pages 5-39, March.
    3. Abreu, Dilip, 1988. "On the Theory of Infinitely Repeated Games with Discounting," Econometrica, Econometric Society, vol. 56(2), pages 383-396, March.
    4. Kalai, Ehud & Stanford, William, 1988. "Finite Rationality and Interpersonal Complexity in Repeated Games," Econometrica, Econometric Society, vol. 56(2), pages 397-410, March.
    5. Mailath, George J. & Postlewaite, Andrew & Samuelson, Larry, 2005. "Contemporaneous perfect epsilon-equilibria," Games and Economic Behavior, Elsevier, vol. 53(1), pages 126-140, October.
    6. Mehmet Barlo & Guilherme Carmona, 2004. "Time Dependent Bounded Recall Strategies Are Enough to Play the Discounted Repeated Prisoners' Dilemma," Game Theory and Information 0405006, University Library of Munich, Germany.
    7. Drew Fudenberg & Eric Maskin, 2008. "The Folk Theorem In Repeated Games With Discounting Or With Incomplete Information," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 11, pages 209-230, World Scientific Publishing Co. Pte. Ltd..
    8. Abreu, Dilip & Dutta, Prajit K & Smith, Lones, 1994. "The Folk Theorem for Repeated Games: A NEU Condition," Econometrica, Econometric Society, vol. 62(4), pages 939-948, July.
    9. Neyman, Abraham & Okada, Daijiro, 1999. "Strategic Entropy and Complexity in Repeated Games," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 191-223, October.
    10. Lehrer, Ehud, 1988. "Repeated games with stationary bounded recall strategies," Journal of Economic Theory, Elsevier, vol. 46(1), pages 130-144, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barlo, Mehmet & Carmona, Guilherme & Sabourian, Hamid, 2016. "Bounded memory Folk Theorem," Journal of Economic Theory, Elsevier, vol. 163(C), pages 728-774.
    2. Barlo, Mehmet & Carmona, Guilherme & Sabourian, Hamid, 2009. "Repeated games with one-memory," Journal of Economic Theory, Elsevier, vol. 144(1), pages 312-336, January.
    3. Mailath, George J. & Olszewski, Wojciech, 2011. "Folk theorems with bounded recall under (almost) perfect monitoring," Games and Economic Behavior, Elsevier, vol. 71(1), pages 174-192, January.
    4. Aumann, Robert J., 1997. "Rationality and Bounded Rationality," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 2-14, October.
    5. Gilboa Itzhak & Schmeidler David, 1994. "Infinite Histories and Steady Orbits in Repeated Games," Games and Economic Behavior, Elsevier, vol. 6(3), pages 370-399, May.
    6. George J. Mailath & : Wojciech Olszewski, 2008. "Folk Theorems with Bounded Recall under (Almost) Perfect Monitoring, Second Version," PIER Working Paper Archive 08-027, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 28 Jul 2008.
    7. Stähler, Frank & Wagner, Friedrich, 1998. "Cooperation in a resource extraction game," Kiel Working Papers 846, Kiel Institute for the World Economy (IfW Kiel).
    8. Aramendia, Miguel, 2006. "Asymmetric finite punishments in repeated games," Economics Letters, Elsevier, vol. 92(2), pages 234-239, August.
    9. repec:dau:papers:123456789/6127 is not listed on IDEAS
    10. Goldlücke, Susanne & Kranz, Sebastian, 2012. "Infinitely repeated games with public monitoring and monetary transfers," Journal of Economic Theory, Elsevier, vol. 147(3), pages 1191-1221.
    11. Committee, Nobel Prize, 2005. "Robert Aumann's and Thomas Schelling's Contributions to Game Theory: Analyses of Conflict and Cooperation," Nobel Prize in Economics documents 2005-1, Nobel Prize Committee.
    12. Marco Battaglini & Stephen Coate, 2008. "A Dynamic Theory of Public Spending, Taxation, and Debt," American Economic Review, American Economic Association, vol. 98(1), pages 201-236, March.
    13. Guilherme Carmona, 2002. "Monetary trading: an optimal exchange system," Nova SBE Working Paper Series wp420, Universidade Nova de Lisboa, Nova School of Business and Economics.
    14. Jimmy Chan, 2000. "On the Non-Existence of Reputation Effects in Two-Person Infinitely-Repeated Games," Economics Working Paper Archive 441, The Johns Hopkins University,Department of Economics.
    15. Barlo, Mehmet & Urgun, Can, 2011. "Stochastic discounting in repeated games: Awaiting the almost inevitable," MPRA Paper 28537, University Library of Munich, Germany.
    16. Kalai, E & Neme, A, 1992. "The Strength of a Little Perfection," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(4), pages 335-355.
    17. Cole, Harold L. & Kocherlakota, Narayana R., 2005. "Finite memory and imperfect monitoring," Games and Economic Behavior, Elsevier, vol. 53(1), pages 59-72, October.
    18. Aramendia, Miguel & Wen, Quan, 2020. "Myopic perception in repeated games," Games and Economic Behavior, Elsevier, vol. 119(C), pages 1-14.
    19. Ehud Kalai, 1995. "Games," Discussion Papers 1141, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    20. Mitri Kitti, 2014. "Equilibrium Payoffs for Pure Strategies in Repeated Games," Discussion Papers 98, Aboa Centre for Economics.
    21. Dasgupta, Ani & Ghosh, Sambuddha, 2022. "Self-accessibility and repeated games with asymmetric discounting," Journal of Economic Theory, Elsevier, vol. 200(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:unl:unlfep:wp500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Susana Lopes (email available below). General contact details of provider: https://edirc.repec.org/data/feunlpt.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.