IDEAS home Printed from https://ideas.repec.org/p/tkk/dpaper/dp98.html
   My bibliography  Save this paper

Equilibrium Payoffs for Pure Strategies in Repeated Games

Author

Listed:
  • Mitri Kitti

    (Department of Economics, University of Turku)

Abstract

Equilibrium payoffs corresponding to subgame perfect equilibria in pure strategies are characterized for infinitely repeated games with discounted payoffs. The equilibrium payoff set of a game is a fixed-point of set-valued operators introduced in the paper. The new operator formalism is utilized in showing the folk theorem for repeated games with unequal but constant discount rates. When the players become more patient, the equilibrium payoff set converges to the fixed-point of an asymptotic operator. This limit set corresponds to the subgame perfect equilibria of a continuous-time repeated game. It is shown that the limit set is convex, which implies that pure strategies are sufficient in obtaining all payoffs in the limit. However, this set differs from the set of all feasible and individually rational payoffs, when the discount rates are not equal. The limit sets for constant discount rates can be used in analyzing the outer limit of equilibrium payoffs when the discount factors increase but discount rates are not fixed.

Suggested Citation

  • Mitri Kitti, 2014. "Equilibrium Payoffs for Pure Strategies in Repeated Games," Discussion Papers 98, Aboa Centre for Economics.
  • Handle: RePEc:tkk:dpaper:dp98
    as

    Download full text from publisher

    File URL: http://ace-economics.fi/kuvat/dp98.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Bo & Takahashi, Satoru, 2012. "A folk theorem for repeated games with unequal discounting," Games and Economic Behavior, Elsevier, vol. 76(2), pages 571-581.
    2. Simon, Leo K & Stinchcombe, Maxwell B, 1989. "Extensive Form Games in Continuous Time: Pure Strategies," Econometrica, Econometric Society, vol. 57(5), pages 1171-1214, September.
    3. Abreu, Dilip, 1988. "On the Theory of Infinitely Repeated Games with Discounting," Econometrica, Econometric Society, vol. 56(2), pages 383-396, March.
    4. Drew Fudenberg & Eric Maskin, 2008. "The Folk Theorem In Repeated Games With Discounting Or With Incomplete Information," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 11, pages 209-230, World Scientific Publishing Co. Pte. Ltd..
    5. Abreu, Dilip & Dutta, Prajit K & Smith, Lones, 1994. "The Folk Theorem for Repeated Games: A NEU Condition," Econometrica, Econometric Society, vol. 62(4), pages 939-948, July.
    6. Kimmo Berg & Mitri Kitti, 2013. "Computing Equilibria in Discounted 2 × 2 Supergames," Computational Economics, Springer;Society for Computational Economics, vol. 41(1), pages 71-88, January.
    7. Fudenberg, Drew & Maskin, Eric, 1991. "On the dispensability of public randomization in discounted repeated games," Journal of Economic Theory, Elsevier, vol. 53(2), pages 428-438, April.
    8. Stinchcombe, Maxwell B., 1992. "Maximal strategy sets for continuous-time game theory," Journal of Economic Theory, Elsevier, vol. 56(2), pages 235-265, April.
    9. Ehud Lehrer & Ady Pauzner, 1999. "Repeated Games with Differential Time Preferences," Econometrica, Econometric Society, vol. 67(2), pages 393-412, March.
    10. Abreu, Dilip & Pearce, David & Stacchetti, Ennio, 1986. "Optimal cartel equilibria with imperfect monitoring," Journal of Economic Theory, Elsevier, vol. 39(1), pages 251-269, June.
    11. Kimmo Berg & Mitri Kitti, 2014. "Equilibrium Paths in Discounted Supergames," Discussion Papers 96, Aboa Centre for Economics.
    12. Mitri Kitti, 2013. "Conditional Markov equilibria in discounted dynamic games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(1), pages 77-100, August.
    13. Mitri Kitti, 2013. "Subgame Perfect Equilibria in Discounted Stochastic Games," Discussion Papers 87, Aboa Centre for Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mitri Kitti, 2018. "Subgame Perfect Equilibria in Continuous-Time Repeated Games," Discussion Papers 120, Aboa Centre for Economics.
    2. Kimmo Berg, 2017. "Extremal Pure Strategies and Monotonicity in Repeated Games," Computational Economics, Springer;Society for Computational Economics, vol. 49(3), pages 387-404, March.
    3. Aramendia, Miguel & Wen, Quan, 2020. "Myopic perception in repeated games," Games and Economic Behavior, Elsevier, vol. 119(C), pages 1-14.
    4. Dasgupta, Ani & Ghosh, Sambuddha, 2022. "Self-accessibility and repeated games with asymmetric discounting," Journal of Economic Theory, Elsevier, vol. 200(C).
    5. Kimmo Berg & Gijs Schoenmakers, 2017. "Construction of Subgame-Perfect Mixed-Strategy Equilibria in Repeated Games," Games, MDPI, vol. 8(4), pages 1-14, November.
    6. Kimmo Berg & Markus Kärki, 2018. "Critical Discount Factor Values in Discounted Supergames," Games, MDPI, vol. 9(3), pages 1-17, July.
    7. Kimmo Berg & Mitri Kitti, 2014. "Equilibrium Paths in Discounted Supergames," Discussion Papers 96, Aboa Centre for Economics.
    8. George J. Mailath & : Wojciech Olszewski, 2008. "Folk Theorems with Bounded Recall under (Almost) Perfect Monitoring, Second Version," PIER Working Paper Archive 08-027, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 28 Jul 2008.
    9. Kimmo Berg, 2016. "Elementary Subpaths in Discounted Stochastic Games," Dynamic Games and Applications, Springer, vol. 6(3), pages 304-323, September.
    10. Jimmy Chan, 2000. "On the Non-Existence of Reputation Effects in Two-Person Infinitely-Repeated Games," Economics Working Paper Archive 441, The Johns Hopkins University,Department of Economics.
    11. Kimmo Berg & Mitri Kitti, 2013. "Computing Equilibria in Discounted 2 × 2 Supergames," Computational Economics, Springer;Society for Computational Economics, vol. 41(1), pages 71-88, January.
    12. Mitri Kitti, 2013. "Subgame Perfect Equilibria in Discounted Stochastic Games," Discussion Papers 87, Aboa Centre for Economics.
    13. Cesi Berardino & Iozzi Alberto & Valentini Edilio, 2012. "Regulating Unverifiable Quality by Fixed-Price Contracts," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 12(1), pages 1-39, September.
    14. Barlo, Mehmet & Carmona, Guilherme & Sabourian, Hamid, 2016. "Bounded memory Folk Theorem," Journal of Economic Theory, Elsevier, vol. 163(C), pages 728-774.
    15. Chihiro Morooka, 2021. "Equilibrium payoffs in two-player discounted OLG games," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(4), pages 1021-1032, December.
    16. Chen, Bo & Takahashi, Satoru, 2012. "A folk theorem for repeated games with unequal discounting," Games and Economic Behavior, Elsevier, vol. 76(2), pages 571-581.
    17. Bernergård, Axel, 2019. "Self-control problems and the folk theorem," Journal of Economic Behavior & Organization, Elsevier, vol. 163(C), pages 332-347.
    18. Drew Fudenberg & David K. Levine & Satoru Takahashi, 2008. "Perfect public equilibrium when players are patient," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 16, pages 345-367, World Scientific Publishing Co. Pte. Ltd..
    19. Mehmet Barlo & Guilherme Carmona, 2007. "One - memory in repeated games," Nova SBE Working Paper Series wp500, Universidade Nova de Lisboa, Nova School of Business and Economics.
    20. Salonen, Hannu & Vartiainen, Hannu, 2008. "Valuating payoff streams under unequal discount factors," Economics Letters, Elsevier, vol. 99(3), pages 595-598, June.

    More about this item

    Keywords

    repeated game; equilibrium payoff set; folk theorem; unequal discount rates; continuous-time game;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tkk:dpaper:dp98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Susmita Baulia (email available below). General contact details of provider: https://edirc.repec.org/data/tukkkfi.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.