IDEAS home Printed from https://ideas.repec.org/a/gam/jgames/v9y2018i3p47-d157130.html
   My bibliography  Save this article

Critical Discount Factor Values in Discounted Supergames

Author

Listed:
  • Kimmo Berg

    (Department of Mathematics and Systems Analysis, Aalto University School of Science, P.O. Box 11100, FI-00076 Aalto, Finland)

  • Markus Kärki

    (Department of Mathematics and Systems Analysis, Aalto University School of Science, P.O. Box 11100, FI-00076 Aalto, Finland)

Abstract

This paper examines the subgame-perfect equilibria in symmetric 2 × 2 supergames. We solve the smallest discount factor value for which the players obtain all the feasible and individually rational payoffs as equilibrium payoffs. We show that the critical discount factor values are not that high in many games and they generally depend on how large the payoff set is compared to the set of feasible payoffs. We analyze how the stage-game payoffs affect the required level of patience and organize the games into groups based on similar behavior. We study how the different strategies affect the set of equilibria by comparing pure, mixed and correlated strategies. This helps us understand better how discounting affects the set of equilibria and we can identify the games where extreme patience is required and the type of payoffs that are difficult to obtain. We also observe discontinuities in the critical values, which means that small changes in the stage-game payoffs may affect dramatically the equilibrium payoffs.

Suggested Citation

  • Kimmo Berg & Markus Kärki, 2018. "Critical Discount Factor Values in Discounted Supergames," Games, MDPI, vol. 9(3), pages 1-17, July.
  • Handle: RePEc:gam:jgames:v:9:y:2018:i:3:p:47-:d:157130
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-4336/9/3/47/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-4336/9/3/47/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James W. Friedman, 1971. "A Non-cooperative Equilibrium for Supergames," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 38(1), pages 1-12.
    2. Drew Fudenberg & David Levine & Eric Maskin, 2008. "The Folk Theorem With Imperfect Public Information," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 12, pages 231-273, World Scientific Publishing Co. Pte. Ltd..
    3. Drew Fudenberg & Eric Maskin, 2008. "The Folk Theorem In Repeated Games With Discounting Or With Incomplete Information," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 11, pages 209-230, World Scientific Publishing Co. Pte. Ltd..
    4. Kenneth L. Judd & Sevin Yeltekin & James Conklin, 2003. "Computing Supergame Equilibria," Econometrica, Econometric Society, vol. 71(4), pages 1239-1254, July.
    5. Kimmo Berg & Mitri Kitti, 2013. "Computing Equilibria in Discounted 2 × 2 Supergames," Computational Economics, Springer;Society for Computational Economics, vol. 41(1), pages 71-88, January.
    6. Abreu, Dilip & Dutta, Prajit K & Smith, Lones, 1994. "The Folk Theorem for Repeated Games: A NEU Condition," Econometrica, Econometric Society, vol. 62(4), pages 939-948, July.
    7. Sorin, Sylvain, 1992. "Repeated games with complete information," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 1, chapter 4, pages 71-107, Elsevier.
    8. Abreu, Dilip & Pearce, David & Stacchetti, Ennio, 1986. "Optimal cartel equilibria with imperfect monitoring," Journal of Economic Theory, Elsevier, vol. 39(1), pages 251-269, June.
    9. Abreu, Dilip, 1986. "Extremal equilibria of oligopolistic supergames," Journal of Economic Theory, Elsevier, vol. 39(1), pages 191-225, June.
    10. Stahl, Dale II, 1991. "The graph of Prisoners' Dilemma supergame payoffs as a function of the discount factor," Games and Economic Behavior, Elsevier, vol. 3(3), pages 368-384, August.
    11. Drew Fudenberg & Yuichi Yamamoto, 2010. "Repeated Games Where the Payoffs and Monitoring Structure Are Unknown," Econometrica, Econometric Society, vol. 78(5), pages 1673-1710, September.
    12. Abreu, Dilip, 1988. "On the Theory of Infinitely Repeated Games with Discounting," Econometrica, Econometric Society, vol. 56(2), pages 383-396, March.
    13. Abreu, Dilip & Sannikov, Yuliy, 2014. "An algorithm for two-player repeated games with perfect monitoring," Theoretical Economics, Econometric Society, vol. 9(2), May.
    14. Mailath, George J. & Samuelson, Larry, 2006. "Repeated Games and Reputations: Long-Run Relationships," OUP Catalogue, Oxford University Press, number 9780195300796.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kimmo Berg & Gijs Schoenmakers, 2017. "Construction of Subgame-Perfect Mixed-Strategy Equilibria in Repeated Games," Games, MDPI, vol. 8(4), pages 1-14, November.
    2. Kimmo Berg & Mitri Kitti, 2014. "Equilibrium Paths in Discounted Supergames," Discussion Papers 96, Aboa Centre for Economics.
    3. Kimmo Berg, 2017. "Extremal Pure Strategies and Monotonicity in Repeated Games," Computational Economics, Springer;Society for Computational Economics, vol. 49(3), pages 387-404, March.
    4. Sugaya, Takuo & Wolitzky, Alexander, 2018. "Bounding payoffs in repeated games with private monitoring: n-player games," Journal of Economic Theory, Elsevier, vol. 175(C), pages 58-87.
    5. Kimmo Berg, 2016. "Elementary Subpaths in Discounted Stochastic Games," Dynamic Games and Applications, Springer, vol. 6(3), pages 304-323, September.
    6. Goldlücke, Susanne & Kranz, Sebastian, 2012. "Infinitely repeated games with public monitoring and monetary transfers," Journal of Economic Theory, Elsevier, vol. 147(3), pages 1191-1221.
    7. Osório-Costa, António M., 2009. "Efficiency Gains in Repeated Games at Random Moments in Time," MPRA Paper 13105, University Library of Munich, Germany.
    8. Colombo, Luca & Labrecciosa, Paola, 2006. "Optimal punishments with detection lags," Economics Letters, Elsevier, vol. 92(2), pages 198-201, August.
    9. Cesi Berardino & Iozzi Alberto & Valentini Edilio, 2012. "Regulating Unverifiable Quality by Fixed-Price Contracts," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 12(1), pages 1-39, September.
    10. Drew Fudenberg & David K. Levine & Satoru Takahashi, 2008. "Perfect public equilibrium when players are patient," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 16, pages 345-367, World Scientific Publishing Co. Pte. Ltd..
    11. Kaplow, Louis & Shapiro, Carl, 2007. "Antitrust," Handbook of Law and Economics, in: A. Mitchell Polinsky & Steven Shavell (ed.), Handbook of Law and Economics, edition 1, volume 2, chapter 15, pages 1073-1225, Elsevier.
    12. Mitri Kitti, 2013. "Conditional Markov equilibria in discounted dynamic games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(1), pages 77-100, August.
    13. Labrecciosa Paola & Colombo Luca, 2010. "Technology Uncertainty and Market Collusion," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 10(1), pages 1-17, March.
    14. George J. Mailath & : Wojciech Olszewski, 2008. "Folk Theorems with Bounded Recall under (Almost) Perfect Monitoring, Second Version," PIER Working Paper Archive 08-027, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 28 Jul 2008.
    15. Mailath, George J. & Olszewski, Wojciech, 2011. "Folk theorems with bounded recall under (almost) perfect monitoring," Games and Economic Behavior, Elsevier, vol. 71(1), pages 174-192, January.
    16. Laclau, M., 2013. "Repeated games with local monitoring and private communication," Economics Letters, Elsevier, vol. 120(2), pages 332-337.
    17. George J. Mailath & Volker Nocke & Lucy White, 2017. "When And How The Punishment Must Fit The Crime," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 58(2), pages 315-330, May.
    18. Aramendia, Miguel & Wen, Quan, 2020. "Myopic perception in repeated games," Games and Economic Behavior, Elsevier, vol. 119(C), pages 1-14.
    19. Mitri Kitti, 2014. "Equilibrium Payoffs for Pure Strategies in Repeated Games," Discussion Papers 98, Aboa Centre for Economics.
    20. Dasgupta, Ani & Ghosh, Sambuddha, 2022. "Self-accessibility and repeated games with asymmetric discounting," Journal of Economic Theory, Elsevier, vol. 200(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jgames:v:9:y:2018:i:3:p:47-:d:157130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.