IDEAS home Printed from https://ideas.repec.org/p/att/wimass/20025.html
   My bibliography  Save this paper

Contemporaneous perfect Epsilon-equilibria

Author

Listed:
  • Mailath,G.J.
  • Postlewaite,A.
  • Samuelson,L.

    (University of Wisconsin-Madison, Social Systems Research Institute)

Abstract

We examine contemporaneous perfect epsilon-equilibria, in which a player’s actions after every history, evaluated at the point of deviation from the equilibrium, must be within epsilon of a best response. This concept implies, but is stronger than, Radner’s ex ante perfect epsilon-equilibrium. A strategy profile is a contemporaneous perfect epsilon-equilibrium of a game if it is a subgame perfect equilibrium in a perturbed game with nearly the same payoffs, with the converse holding for pure equilibria.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Mailath,G.J. & Postlewaite,A. & Samuelson,L., 2002. "Contemporaneous perfect Epsilon-equilibria," Working papers 5, Wisconsin Madison - Social Systems.
  • Handle: RePEc:att:wimass:20025
    as

    Download full text from publisher

    File URL: http://www.ssc.wisc.edu/~larrysam/papers/epsilon.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rubinstein, Ariel, 1982. "Perfect Equilibrium in a Bargaining Model," Econometrica, Econometric Society, vol. 50(1), pages 97-109, January.
    2. Radner, Roy, 1981. "Monitoring Cooperative Agreements in a Repeated Principal-Agent Relationship," Econometrica, Econometric Society, vol. 49(5), pages 1127-1148, September.
    3. Drew Fudenberg & David Levine, 2008. "Limit Games and Limit Equilibria," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 2, pages 21-39, World Scientific Publishing Co. Pte. Ltd..
    4. Borgers, Tilman, 1991. "Upper hemicontinuity of the correspondence of subgame-perfect equilibrium outcomes," Journal of Mathematical Economics, Elsevier, vol. 20(1), pages 89-106.
    5. Ehud Lehrer & Sylvain Sorin, 1998. "-Consistent equilibrium in repeated games," International Journal of Game Theory, Springer;Game Theory Society, vol. 27(2), pages 231-244.
    6. Borgers, Tilman, 1989. "Perfect equilibrium histories of finite and infinite horizon games," Journal of Economic Theory, Elsevier, vol. 47(1), pages 218-227, February.
    7. Drew Fudenberg & David Levine, 2008. "Subgame–Perfect Equilibria of Finite– and Infinite–Horizon Games," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 1, pages 3-20, World Scientific Publishing Co. Pte. Ltd..
    8. Watson Joel, 1994. "Cooperation in the Infinitely Repeated Prisoners' Dilemma with Perturbations," Games and Economic Behavior, Elsevier, vol. 7(2), pages 260-285, September.
    9. Kohlberg, Elon & Mertens, Jean-Francois, 1986. "On the Strategic Stability of Equilibria," Econometrica, Econometric Society, vol. 54(5), pages 1003-1037, September.
    10. Drew Fudenberg & Jean Tirole, 1991. "Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061414, April.
    11. Radner, Roy, 1980. "Collusive behavior in noncooperative epsilon-equilibria of oligopolies with long but finite lives," Journal of Economic Theory, Elsevier, vol. 22(2), pages 136-154, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehmet Barlo & Guilherme Carmona, 2007. "One - memory in repeated games," Nova SBE Working Paper Series wp500, Universidade Nova de Lisboa, Nova School of Business and Economics.
    2. Martin, Simon & Schlag, Karl H., 2020. "Split it up to create incentives: Investment, public goods and crossing the river," Journal of Economic Theory, Elsevier, vol. 189(C).
    3. Jackson, Matthew O. & Rodriguez-Barraquer, Tomas & Tan, Xu, 2012. "Epsilon-equilibria of perturbed games," Games and Economic Behavior, Elsevier, vol. 75(1), pages 198-216.
    4. Santiago R. Balseiro & Omar Besbes & Gabriel Y. Weintraub, 2019. "Dynamic Mechanism Design with Budget-Constrained Buyers Under Limited Commitment," Operations Research, INFORMS, vol. 67(3), pages 711-730, May.
    5. Schlag, Karl H. & Zapechelnyuk, Andriy, 2017. "Dynamic benchmark targeting," Journal of Economic Theory, Elsevier, vol. 169(C), pages 145-169.
    6. Felix Kubler & Karl Schmedders, 2003. "Approximate Versus Exact Equilibria," Discussion Papers 1382, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    7. Elena Parilina & Georges Zaccour, 2016. "Strategic Support of Node-Consistent Cooperative Outcomes in Dynamic Games Played Over Event Trees," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 1-16, June.
    8. Martin, Simon & Schlag, Karl, 2017. "Finite Horizon Holdup and How to Cross the River," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168136, Verein für Socialpolitik / German Economic Association.
    9. Karl Schlag & Andriy Zapechelnyuk, 2009. "Decision Making in Uncertain and Changing Environments," Discussion Papers 19, Kyiv School of Economics.
    10. Martin, Simon & Schlag, Karl, 2017. "Finite Horizon Holdup and How to Cross the River," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168136, Verein für Socialpolitik / German Economic Association.
    11. Parilina, Elena M. & Zaccour, Georges, 2022. "Payment schemes for sustaining cooperation in dynamic games," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    12. János Flesch & P. Jean-Jacques Herings & Jasmine Maes & Arkadi Predtetchinski, 2021. "Subgame Maxmin Strategies in Zero-Sum Stochastic Games with Tolerance Levels," Dynamic Games and Applications, Springer, vol. 11(4), pages 704-737, December.
    13. Tóbiás, Áron, 2023. "Rational Altruism," Journal of Economic Behavior & Organization, Elsevier, vol. 207(C), pages 50-80.
    14. Tim Kraft & Yanchong Zheng & Feryal Erhun, 2013. "The NGO's Dilemma: How to Influence Firms to Replace a Potentially Hazardous Substance," Manufacturing & Service Operations Management, INFORMS, vol. 15(4), pages 649-669, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duggan, John, 2017. "Existence of stationary bargaining equilibria," Games and Economic Behavior, Elsevier, vol. 102(C), pages 111-126.
    2. Guilherme Carmona, 2005. "On Games Of Perfect Information: Equilibria, Ε–Equilibria And Approximation By Simple Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 491-499.
    3. Guilherme Carmona, 2004. "On Games of Perfect Information: Equilibria, epsilon-Equilibria and Approximation by Simple Games," Game Theory and Information 0402002, University Library of Munich, Germany.
    4. Alós-Ferrer, Carlos & Ritzberger, Klaus, 2017. "Does backwards induction imply subgame perfection?," Games and Economic Behavior, Elsevier, vol. 103(C), pages 19-29.
    5. Vega-Redondo, Fernando, 1997. "Shaping long-run expectations in problems of coordination," European Journal of Political Economy, Elsevier, vol. 13(4), pages 783-806, December.
    6. Vicente Calabuig, 1999. "Ineficiencias de las negociaciones entre dos agentes completamente informados: un panorama," Investigaciones Economicas, Fundación SEPI, vol. 23(3), pages 303-329, September.
    7. Takahashi, Satoru, 2005. "Infinite horizon common interest games with perfect information," Games and Economic Behavior, Elsevier, vol. 53(2), pages 231-247, November.
    8. Chakrabarti, S. K., 1999. "Finite and infinite action dynamic games with imperfect information1," Journal of Mathematical Economics, Elsevier, vol. 32(2), pages 243-266, October.
    9. Harsanyi John C., 1995. "A New Theory of Equilibrium Selection for Games with Incomplete Information," Games and Economic Behavior, Elsevier, vol. 10(2), pages 318-332, August.
    10. Liang Mao, 2017. "Subgame perfect equilibrium in a bargaining model with deterministic procedures," Theory and Decision, Springer, vol. 82(4), pages 485-500, April.
    11. Mao, Liang, 2015. "Subgame Perfect Equilibrium in a Bargaining Model with Deterministic Procedures," MPRA Paper 67859, University Library of Munich, Germany.
    12. Bernheim, B Douglas, 1994. "A Theory of Conformity," Journal of Political Economy, University of Chicago Press, vol. 102(5), pages 841-877, October.
    13. van Damme, E.E.C., 1995. "Game theory : The next stage," Other publications TiSEM 7779b0f9-bef5-45c7-ae6b-7, Tilburg University, School of Economics and Management.
    14. Quan Wen, 2002. "Repeated Games with Asynchronous Moves," Vanderbilt University Department of Economics Working Papers 0204, Vanderbilt University Department of Economics.
    15. Drew Fudenberg & David K. Levine, 2008. "Continuous time limits of repeated games with imperfect public monitoring," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 17, pages 369-388, World Scientific Publishing Co. Pte. Ltd..
    16. Houba, Harold & Wen, Quan, 2014. "Backward induction and unacceptable offers," Journal of Mathematical Economics, Elsevier, vol. 54(C), pages 151-156.
    17. János Flesch & P. Jean-Jacques Herings & Jasmine Maes & Arkadi Predtetchinski, 2021. "Subgame Maxmin Strategies in Zero-Sum Stochastic Games with Tolerance Levels," Dynamic Games and Applications, Springer, vol. 11(4), pages 704-737, December.
    18. Jehiel, Philippe, 2005. "Analogy-based expectation equilibrium," Journal of Economic Theory, Elsevier, vol. 123(2), pages 81-104, August.
    19. Kalai, Ehud & Stanford, William, 1988. "Finite Rationality and Interpersonal Complexity in Repeated Games," Econometrica, Econometric Society, vol. 56(2), pages 397-410, March.
    20. Flavio Toxvaerd & Chryssi Giannitsarou, 2004. "Recursive global games," Money Macro and Finance (MMF) Research Group Conference 2003 104, Money Macro and Finance Research Group.

    More about this item

    JEL classification:

    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:att:wimass:20025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ailsenne Sumwalt (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.