IDEAS home Printed from https://ideas.repec.org/p/ufg/qdsems/lg_physa_2003.html
   My bibliography  Save this paper

Long-Term Fixed-Income Market Structure

Author

Listed:
  • Luca Grilli

Abstract

Long Term Fixed Income Market securities present a strong positive correlation in daily returns. By using a metrical approach and considering "modified" time series, I show how it is possible to show a more complex structure which depends strictly on the maturity date.

Suggested Citation

  • Luca Grilli, 2004. "Long-Term Fixed-Income Market Structure," Quaderni DSEMS lg_physa_2003, Dipartimento di Scienze Economiche, Matematiche e Statistiche, Universita' di Foggia.
  • Handle: RePEc:ufg:qdsems:lg_physa_2003
    DOI: 10.1016/j.physa.2003.10.019
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1016/j.physa.2003.10.019
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.physa.2003.10.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bernaschi, Massimo & Grilli, Luca & Vergni, Davide, 2002. "Statistical analysis of fixed income market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 308(1), pages 381-390.
    2. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    3. R. Baviera & M. Pasquini & M. Serva & D. Vergni & A. Vulpiani, 1999. "Efficiency in foreign exchange markets," Papers cond-mat/9901225, arXiv.org.
    4. J.-P. Bouchaud & M. Potters & M. Meyer, 2000. "Apparent multifractality in financial time series," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 13(3), pages 595-599, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luca Grilli & Angelo Sfrecola, 2005. "Neural Networks to Predict Financial Time Series in a Minority Game Context," Quaderni DSEMS 14-2005, Dipartimento di Scienze Economiche, Matematiche e Statistiche, Universita' di Foggia.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannis Anagnostou & Tiziano Squartini & Drona Kandhai & Diego Garlaschelli, 2020. "Uncovering the mesoscale structure of the credit default swap market to improve portfolio risk modelling," Papers 2006.03014, arXiv.org, revised Apr 2021.
    2. Aoki, Masanao & Hawkins, Raymond, 2009. "Macroeconomic Relaxation: Adjustment Processes of Hierarchical Economic Structures," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-21.
    3. Bernaschi, Massimo & Grilli, Luca & Vergni, Davide, 2002. "Statistical analysis of fixed income market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 308(1), pages 381-390.
    4. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    5. Champagne, Claudia, 2014. "The international syndicated loan market network: An “unholy trinity”?," Global Finance Journal, Elsevier, vol. 25(2), pages 148-168.
    6. Trindade, Graça & Dias, José G. & Ambrósio, Jorge, 2017. "Extracting clusters from aggregate panel data: A market segmentation study," Applied Mathematics and Computation, Elsevier, vol. 296(C), pages 277-288.
    7. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    8. João A. Bastos & Jorge Caiado, 2014. "Clustering financial time series with variance ratio statistics," Quantitative Finance, Taylor & Francis Journals, vol. 14(12), pages 2121-2133, December.
    9. Sebastiano Michele Zema & Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2021. "Mesoscopic Structure of the Stock Market and Portfolio Optimization," Papers 2112.06544, arXiv.org.
    10. Guido Caldarelli & Matthieu Cristelli & Andrea Gabrielli & Luciano Pietronero & Antonio Scala & Andrea Tacchella, 2012. "A Network Analysis of Countries’ Export Flows: Firm Grounds for the Building Blocks of the Economy," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-11, October.
    11. Michelle B Graczyk & Sílvio M Duarte Queirós, 2017. "Intraday seasonalities and nonstationarity of trading volume in financial markets: Collective features," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-23, July.
    12. Shamshuritawati Sharif, 2012. "Correlation Network Analysis of International Postgraduate Students’ Satisfaction in Top Malaysian Universities: A Robust Approach," Modern Applied Science, Canadian Center of Science and Education, vol. 6(12), pages 1-91, December.
    13. Trancoso, Tiago, 2014. "Emerging markets in the global economic network: Real(ly) decoupling?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 499-510.
    14. López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    15. Paulus, Michal & Kristoufek, Ladislav, 2015. "Worldwide clustering of the corruption perception," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 351-358.
    16. Ben Craig & Martín Saldías, 2016. "Spatial Dependence and Data-Driven Networks of International Banks," IMF Working Papers 2016/184, International Monetary Fund.
    17. Roy Cerqueti & Pierpaolo D’Urso & Livia Giovanni & Raffaele Mattera & Vincenzina Vitale, 2024. "Fuzzy clustering of time series based on weighted conditional higher moments," Computational Statistics, Springer, vol. 39(6), pages 3091-3114, September.
    18. Peng Yue & Qing Cai & Wanfeng Yan & Wei-Xing Zhou, 2020. "Information flow networks of Chinese stock market sectors," Papers 2004.08759, arXiv.org.
    19. Carlos León & Javier Miguélez, 2020. "Interbank relationship lending in Colombia," Borradores de Economia 1118, Banco de la Republica de Colombia.
    20. Djauhari, Maman Abdurachman & Gan, Siew Lee, 2015. "Optimality problem of network topology in stocks market analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 108-114.

    More about this item

    Keywords

    Fixed income; clustering;

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C49 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Other
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • D49 - Microeconomics - - Market Structure, Pricing, and Design - - - Other

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ufg:qdsems:lg_physa_2003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Luca Grilli (email available below). General contact details of provider: https://edirc.repec.org/data/emsfoit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.