IDEAS home Printed from https://ideas.repec.org/a/ibn/masjnl/v6y2012i12p91.html
   My bibliography  Save this article

Correlation Network Analysis of International Postgraduate Students’ Satisfaction in Top Malaysian Universities: A Robust Approach

Author

Listed:
  • Shamshuritawati Sharif

Abstract

This paper deals with an analysis of correlation network among the satisfaction characteristics evaluated by the international students of top five Malaysian universities. The method developed in econophysics has been used to filter the information contained in a correlation structure. In this paper, we present a correlation network analysis where the correlation structure is determined based on robust approach. This approach is used to have a better understanding of foreign students’ satisfaction which will be very useful for Malaysian universities. Based on our proposed centrality measure, interestingly, the result demonstrates that the item “pay premium price†is the most influential characteristic that reflects to the highest degree of satisfaction for the international students. The university senior management would benefit by knowing this result in order to gain competitive advantage over other universities. Practical implications are provided accordingly.

Suggested Citation

  • Shamshuritawati Sharif, 2012. "Correlation Network Analysis of International Postgraduate Students’ Satisfaction in Top Malaysian Universities: A Robust Approach," Modern Applied Science, Canadian Center of Science and Education, vol. 6(12), pages 1-91, December.
  • Handle: RePEc:ibn:masjnl:v:6:y:2012:i:12:p:91
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/mas/article/download/20753/14515
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/mas/article/view/20753
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pawe{l} Sieczka & Janusz A. Ho{l}yst, 2008. "Correlations in commodity markets," Papers 0803.3884, arXiv.org, revised Jan 2009.
    2. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    3. Beverly A. Browne & Dennis O. Kaldenberg & William G. Browne & Daniel J. Brown, 1998. "Student as Customer: Factors Affecting Satisfaction and Assessments of Institutional Quality," Journal of Marketing for Higher Education, Taylor & Francis Journals, vol. 8(3), pages 1-14, July.
    4. Alireza Abbasi & Jorn Altmann, 2010. "On the Correlation between Research Performance and Social Network Analysis Measures Applied to Research Collaboration Networks," TEMEP Discussion Papers 201066, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Oct 2010.
    5. Sieczka, Paweł & Hołyst, Janusz A., 2009. "Correlations in commodity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1621-1630.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Djauhari, Maman Abdurachman & Gan, Siew Lee, 2015. "Optimality problem of network topology in stocks market analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 108-114.
    2. Shamshuritawati Sharif & Maman Djauhari, 2012. "A Proposed Centrality Measure: The Case of Stocks Traded at Bursa Malaysia," Modern Applied Science, Canadian Center of Science and Education, vol. 6(10), pages 1-62, October.
    3. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    4. Lee, Junghoon & Youn, Janghyuk & Chang, Woojin, 2012. "Intraday volatility and network topological properties in the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1354-1360.
    5. Ioannis Anagnostou & Tiziano Squartini & Drona Kandhai & Diego Garlaschelli, 2020. "Uncovering the mesoscale structure of the credit default swap market to improve portfolio risk modelling," Papers 2006.03014, arXiv.org, revised Apr 2021.
    6. Fousekis, Panos & Grigoriadis, Vasilis, 2019. "Integration and Hierarchy of Pork Markets in the EU: An Analysis from the Vantage of Graph Theory," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 68(2), June.
    7. Karel Janda & Ladislav Krištoufek & Barbora Schererová & David Zilberman, 2021. "Price transmission in biofuel-related global agricultural networks," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 67(10), pages 399-408.
    8. Deviren, Seyma Akkaya & Deviren, Bayram, 2016. "The relationship between carbon dioxide emission and economic growth: Hierarchical structure methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 429-439.
    9. Leonidas Sandoval Junior, 2011. "A Map of the Brazilian Stock Market," Papers 1107.4146, arXiv.org, revised Mar 2013.
    10. Jarosław Kwapień & Sylwia Gworek & Stanisław Drożdż & Andrzej Górski, 2009. "Analysis of a network structure of the foreign currency exchange market," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 4(1), pages 55-72, June.
    11. Kazemilari, Mansooreh & Mardani, Abbas & Streimikiene, Dalia & Zavadskas, Edmundas Kazimieras, 2017. "An overview of renewable energy companies in stock exchange: Evidence from minimal spanning tree approach," Renewable Energy, Elsevier, vol. 102(PA), pages 107-117.
    12. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    13. Kim, Kyungwon & Jung, Sean S., 2014. "Empirical analysis of structural change in Credit Default Swap volatility," Chaos, Solitons & Fractals, Elsevier, vol. 60(C), pages 56-67.
    14. Kantar, Ersin & Keskin, Mustafa, 2013. "The relationships between electricity consumption and GDP in Asian countries, using hierarchical structure methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(22), pages 5678-5684.
    15. Ji, Qiang & Fan, Ying, 2016. "Evolution of the world crude oil market integration: A graph theory analysis," Energy Economics, Elsevier, vol. 53(C), pages 90-100.
    16. Wang, Gang-Jin & Xie, Chi & Han, Feng & Sun, Bo, 2012. "Similarity measure and topology evolution of foreign exchange markets using dynamic time warping method: Evidence from minimal spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4136-4146.
    17. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Correlation of financial markets in times of crisis," Papers 1102.1339, arXiv.org, revised Mar 2011.
    18. Kim, Min Jae & Kim, Sehyun & Jo, Yong Hwan & Kim, Soo Yong, 2011. "Dependence structure of the commodity and stock markets, and relevant multi-spread strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3842-3854.
    19. Sandoval, Leonidas, 2012. "Pruning a minimum spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2678-2711.
    20. Wang, Yudong & Wei, Yu & Wu, Chongfeng, 2011. "Detrended fluctuation analysis on spot and futures markets of West Texas Intermediate crude oil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 864-875.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:masjnl:v:6:y:2012:i:12:p:91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.