Extracting clusters from aggregate panel data: A market segmentation study
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2016.10.012
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- R. Mantegna, 1999.
"Hierarchical structure in financial markets,"
The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
- R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
- Rosario N. Mantegna, 1998. "Hierarchical Structure in Financial Markets," Papers cond-mat/9802256, arXiv.org.
- Basalto, Nicolas & Bellotti, Roberto & De Carlo, Francesco & Facchi, Paolo & Pantaleo, Ester & Pascazio, Saverio, 2007. "Hausdorff clustering of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 635-644.
- Shen, Chungen & Xue, Wenjuan & Chen, Xiongda, 2010. "Global convergence of a robust filter SQP algorithm," European Journal of Operational Research, Elsevier, vol. 206(1), pages 34-45, October.
- José Dias & Sofia Ramos, 2014. "The aftermath of the subprime crisis: a clustering analysis of world banking sector," Review of Quantitative Finance and Accounting, Springer, vol. 42(2), pages 293-308, February.
- Elmahdy, Emad E., 2015. "A new approach for Weibull modeling for reliability life data analysis," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 708-720.
- Dias, José G. & Vermunt, Jeroen K. & Ramos, Sofia, 2015. "Clustering financial time series: New insights from an extended hidden Markov model," European Journal of Operational Research, Elsevier, vol. 243(3), pages 852-864.
- De Angelis, Luca & Dias, José G., 2014. "Mining categorical sequences from data using a hybrid clustering method," European Journal of Operational Research, Elsevier, vol. 234(3), pages 720-730.
- Trindade, Graça & Ambrósio, Jorge, 2012. "An optimization method to estimate models with store-level data: A case study," European Journal of Operational Research, Elsevier, vol. 217(3), pages 664-672.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Alejandro Barragán-Ocaña & Gerardo Reyes-Ruiz & Samuel Olmos-Peña & Hortensia Gómez-Viquez, 2020. "Approach to the identification of an alternative technological innovation index," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 23-45, January.
- Xinghua Fang & Jian Zhou & Hongya Zhao & Yizeng Chen, 2022. "A biclustering-based heterogeneous customer requirement determination method from customer participation in product development," Annals of Operations Research, Springer, vol. 309(2), pages 817-835, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
- Marco Guerra & Francesca Bassi & José G. Dias, 2020. "A Multiple-Indicator Latent Growth Mixture Model to Track Courses with Low-Quality Teaching," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(2), pages 361-381, January.
- Gautier Marti & Frank Nielsen & Philippe Donnat & S'ebastien Andler, 2016. "On clustering financial time series: a need for distances between dependent random variables," Papers 1603.07822, arXiv.org.
- Moliner, Jesús & Epifanio, Irene, 2019. "Robust multivariate and functional archetypal analysis with application to financial time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 195-208.
- Gautier Marti & Sébastien Andler & Frank Nielsen & Philippe Donnat, 2016. "Clustering Financial Time Series: How Long is Enough?," Post-Print hal-01400395, HAL.
- Maharaj, Elizabeth Ann & D’Urso, Pierpaolo, 2010. "A coherence-based approach for the pattern recognition of time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3516-3537.
- Gautier Marti & S'ebastien Andler & Frank Nielsen & Philippe Donnat, 2016. "Clustering Financial Time Series: How Long is Enough?," Papers 1603.04017, arXiv.org, revised Apr 2016.
- Dias, José G. & Vermunt, Jeroen K. & Ramos, Sofia, 2015. "Clustering financial time series: New insights from an extended hidden Markov model," European Journal of Operational Research, Elsevier, vol. 243(3), pages 852-864.
- Pierpaolo D’Urso & Livia Giovanni & Riccardo Massari, 2021. "Trimmed fuzzy clustering of financial time series based on dynamic time warping," Annals of Operations Research, Springer, vol. 299(1), pages 1379-1395, April.
- Ueda, Renan Mitsuo & Souza, Adriano Mendonça & Menezes, Rui Manuel Campilho Pereira, 2020. "How macroeconomic variables affect admission and dismissal in the Brazilian electro-electronic sector: A VAR-based model and cluster analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
- Champagne, Claudia, 2014. "The international syndicated loan market network: An “unholy trinity”?," Global Finance Journal, Elsevier, vol. 25(2), pages 148-168.
- Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
- João A. Bastos & Jorge Caiado, 2014.
"Clustering financial time series with variance ratio statistics,"
Quantitative Finance, Taylor & Francis Journals, vol. 14(12), pages 2121-2133, December.
- Joao A. Bastos & Jorge Caiado, 2009. "Clustering financial time series with variance ratio statistics," CEMAPRE Working Papers 0904, Centre for Applied Mathematics and Economics (CEMAPRE), School of Economics and Management (ISEG), Technical University of Lisbon.
- Sebastiano Michele Zema & Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2021.
"Mesoscopic Structure of the Stock Market and Portfolio Optimization,"
Papers
2112.06544, arXiv.org.
- Sebastiano Michele Zema & Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2021. "Mesoscopic Structure of the Stock Market and Portfolio Optimization," LEM Papers Series 2021/45, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Guido Caldarelli & Matthieu Cristelli & Andrea Gabrielli & Luciano Pietronero & Antonio Scala & Andrea Tacchella, 2012. "A Network Analysis of Countries’ Export Flows: Firm Grounds for the Building Blocks of the Economy," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-11, October.
- Michelle B Graczyk & Sílvio M Duarte Queirós, 2017. "Intraday seasonalities and nonstationarity of trading volume in financial markets: Collective features," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-23, July.
- Shamshuritawati Sharif, 2012. "Correlation Network Analysis of International Postgraduate Students’ Satisfaction in Top Malaysian Universities: A Robust Approach," Modern Applied Science, Canadian Center of Science and Education, vol. 6(12), pages 1-91, December.
- Trancoso, Tiago, 2014. "Emerging markets in the global economic network: Real(ly) decoupling?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 499-510.
- López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
- Eric Benhamou & David Saltiel & Sandrine Ungari & Abhishek Mukhopadhyay & Jamal Atif, 2020. "AAMDRL: Augmented Asset Management with Deep Reinforcement Learning," Papers 2010.08497, arXiv.org.
More about this item
Keywords
Sequential quadratic programing; Cluster analysis; Panel data; Market segmentation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:296:y:2017:i:c:p:277-288. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.