IDEAS home Printed from https://ideas.repec.org/p/uct/uconnp/2005-47.html
   My bibliography  Save this paper

Property Condition Disclosure Law: Does 'Seller Tell All' Matter in Property Values?

Author

Listed:
  • Anupam Nanda

    (University of Connecticut)

Abstract

At the time when at least two-thirds of the US states have already mandated some form of seller's property condition disclosure statement and there is a movement in this direction nationally, this paper examines the impact of seller's property condition disclosure law on the residential real estate values, the information asymmetry in housing transactions and shift of risk from buyers and brokers to the sellers, and attempts to ascertain the factors that lead to adoption of the disclosur law. The analytical structure employs parametric panel data models, semi-parametric propensity score matching models, and an event study framework using a unique set of economic and institutional attributes for a quarterly panel of 291 US Metropolitan Statistical Areas (MSAs) and 50 US States spanning 21 years from 1984 to 2004. Exploiting the MSA level variation in house prices, the study finds that the average seller may be able to fetch a higher price (about three to four percent) for the house if she furnishes a state-mandated seller's property condition disclosure statement to the buyer.

Suggested Citation

  • Anupam Nanda, 2005. "Property Condition Disclosure Law: Does 'Seller Tell All' Matter in Property Values?," Working papers 2005-47, University of Connecticut, Department of Economics, revised Jul 2006.
  • Handle: RePEc:uct:uconnp:2005-47
    Note: This paper is adapted from the third chapter of my doctoral dissertation. I would like to thank my advisors - Stephen L. Ross, John M. Clapp, and Dennis R. Heffley for their insightful comments on the idea and methodology. I greatly benefited from helpful comments from James Davis and Katherine Pancak. Comments from Dhamika Dharmapala, Thomas Miceli, and seminar participants at the University of Connecticut, Economics Brownbag Seminar Series are acknowledged. I would also like to thank Tim Storey (National Conference of State Legislatures), Daniel Conti (Bureau of Labor Statistics) for assistance with data, and Sascha Becker of University of Munich for assistance with STATA module on propensity score matching algorithm (written by Sascha Becker and Andrea Ichino). All remaining rrors are mine.
    as

    Download full text from publisher

    File URL: https://media.economics.uconn.edu/working/2005-47r.pdf
    File Function: Revised version
    Download Restriction: no

    File URL: https://media.economics.uconn.edu/working/2005-47.pdf
    File Function: Original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gabor Kezdi, 2005. "Robus Standard Error Estimation in Fixed-Effects Panel Models," Econometrics 0508018, University Library of Munich, Germany.
    2. Arellano, Manuel & Honore, Bo, 2001. "Panel data models: some recent developments," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 53, pages 3229-3296, Elsevier.
    3. Marco Caliendo & Sabine Kopeinig, 2008. "Some Practical Guidance For The Implementation Of Propensity Score Matching," Journal of Economic Surveys, Wiley Blackwell, vol. 22(1), pages 31-72, February.
    4. Ahn, Seung C. & Schmidt, Peter, 1995. "Efficient estimation of models for dynamic panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 5-27, July.
    5. Norman Miller & Liang Peng, 2006. "Exploring Metropolitan Housing Price Volatility," The Journal of Real Estate Finance and Economics, Springer, vol. 33(1), pages 5-18, August.
    6. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    7. George Lefcoe, "undated". "Property Condition Disclosure Forms: How REALTORS Eased the Transition from Caveat Emptor to "Seller Tell All"," University of Southern California Legal Working Paper Series usclwps-1008, University of Southern California Law School.
    8. Marianne Bertrand & Esther Duflo & Sendhil Mullainathan, 2004. "How Much Should We Trust Differences-In-Differences Estimates?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 119(1), pages 249-275.
    9. Sascha O. Becker & Andrea Ichino, 2002. "Estimation of average treatment effects based on propensity scores," Stata Journal, StataCorp LP, vol. 2(4), pages 358-377, November.
    10. Roberta Romano & Sanjai Bhagat, 2001. "Event Studies and the Law: Part II - Empirical Studies of Corporate Law," Yale School of Management Working Papers ysm183, Yale School of Management.
    11. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 605-654.
    12. Kiefer, Nicholas M, 1988. "Economic Duration Data and Hazard Functions," Journal of Economic Literature, American Economic Association, vol. 26(2), pages 646-679, June.
    13. Rajeev H. Dehejia & Sadek Wahba, 1998. "Causal Effects in Non-Experimental Studies: Re-Evaluating the Evaluation of Training Programs," NBER Working Papers 6586, National Bureau of Economic Research, Inc.
    14. Rajeev H. Dehejia & Sadek Wahba, 2002. "Propensity Score-Matching Methods For Nonexperimental Causal Studies," The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 151-161, February.
    15. Slottje, Daniel J. & Millimet, Daniel L. & Buchanan, Michael J., 2007. "Econometric analysis of copyrights," Journal of Econometrics, Elsevier, vol. 139(2), pages 303-317, August.
    16. Sanjai Bhagat & Roberta Romano, "undated". "Event Studies and the Law: Part II--Empirical Studies and Corporate Law," Yale Law School John M. Olin Center for Studies in Law, Economics, and Public Policy Working Paper Series yale_lepp-1019, Yale Law School John M. Olin Center for Studies in Law, Economics, and Public Policy.
    17. Roberta Romano & Sanjai Bhagat, 2001. "Event Studies and the Law - Part I: Technique and Corporate Litigation," Yale School of Management Working Papers ysm182, Yale School of Management.
    18. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(2), pages 261-294.
    19. Sanjai Bhagat & Roberta Romano, "undated". "Event Studies and the Law--Part I: Technique and Corporate Litigation," Yale Law School John M. Olin Center for Studies in Law, Economics, and Public Policy Working Paper Series yale_lepp-1021, Yale Law School John M. Olin Center for Studies in Law, Economics, and Public Policy.
    20. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeffrey Zabel, 2007. "The Impact of Imperfect Information on the Transactions of Contaminated Properties," NCEE Working Paper Series 200703, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Jan 2007.
    2. Anupam Nanda, 2008. "Property Condition Disclosure Law: Why Did States Mandate ‘Seller Tell All’?," The Journal of Real Estate Finance and Economics, Springer, vol. 37(2), pages 131-146, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jones A.M & Rice N, 2009. "Econometric Evaluation of Health Policies," Health, Econometrics and Data Group (HEDG) Working Papers 09/09, HEDG, c/o Department of Economics, University of York.
    2. Arnstein Aassve & Maria A. Davia & Maria Iacovou & Stefano Mazzuco, 2007. "Does Leaving Home Make You Poor? Evidence from 13 European Countries," European Journal of Population, Springer;European Association for Population Studies, vol. 23(3), pages 315-338, October.
    3. Andrea Pufahl & Christoph R. Weiss, 2009. "Evaluating the effects of farm programmes: results from propensity score matching," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 36(1), pages 79-101, March.
    4. Eliasson, Kent, 2006. "How Robust is the Evidence on the Returns to College Choice? Results Using Swedish Administrative Data," Umeå Economic Studies 692, Umeå University, Department of Economics.
    5. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    6. Tommaso Nannicini, 2007. "Simulation-based sensitivity analysis for matching estimators," Stata Journal, StataCorp LP, vol. 7(3), pages 334-350, September.
    7. Volpe Martincus, Christian & Carballo, Jerónimo, 2008. "Is export promotion effective in developing countries? Firm-level evidence on the intensive and the extensive margins of exports," Journal of International Economics, Elsevier, vol. 76(1), pages 89-106, September.
    8. Anupam Nanda & Stephen Ross, 2012. "The Impact of Property Condition Disclosure Laws on Housing Prices: Evidence from an Event Study Using Propensity Scores," The Journal of Real Estate Finance and Economics, Springer, vol. 45(1), pages 88-109, June.
    9. A. Nivorozhkin & E. Nivorozhkin, 2007. "Do government sponsored vocational training programmes help the unemployed find jobs? Evidence from Russia," Applied Economics Letters, Taylor & Francis Journals, vol. 14(1), pages 5-10.
    10. Wendimu, Mengistu Assefa & Henningsen, Arne & Gibbon, Peter, 2016. "Sugarcane Outgrowers in Ethiopia: “Forced” to Remain Poor?," World Development, Elsevier, vol. 83(C), pages 84-97.
    11. Dettmann, E. & Becker, C. & Schmeißer, C., 2011. "Distance functions for matching in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1942-1960, May.
    12. Duong, Pham Bao & Thanh, Pham Tien, 2019. "Adoption and effects of modern rice varieties in Vietnam: Micro-econometric analysis of household surveys," Economic Analysis and Policy, Elsevier, vol. 64(C), pages 282-292.
    13. Eliasson, Kent, 2006. "College Choice And Earnings Among University Graduates In Sweden," Umeå Economic Studies 693, Umeå University, Department of Economics.
    14. Essama-Nssah, B., 2006. "Propensity score matching and policy impact analysis - a demonstration in EViews," Policy Research Working Paper Series 3877, The World Bank.
    15. Slottje, Daniel J. & Millimet, Daniel L. & Buchanan, Michael J., 2007. "Econometric analysis of copyrights," Journal of Econometrics, Elsevier, vol. 139(2), pages 303-317, August.
    16. Ramírez-Álvarez, Aurora Alejandra, 2019. "Land titling and its effect on the allocation of public goods: Evidence from Mexico," World Development, Elsevier, vol. 124(C), pages 1-1.
    17. Marisa Coetzee, 2013. "Finding the Benefits: Estimating the Impact of The South African Child Support Grant," South African Journal of Economics, Economic Society of South Africa, vol. 81(3), pages 427-450, September.
    18. Dettmann, Eva & Becker, Claudia & Schmeißer, Christian, 2010. "Is there a Superior Distance Function for Matching in Small Samples?," IWH Discussion Papers 3/2010, Halle Institute for Economic Research (IWH).
    19. Ashok K. Mishra & Anjani Kumar & Pramod K. Joshi & Alwin D'Souza, 2018. "Cooperatives, contract farming, and farm size: The case of tomato producers in Nepal," Agribusiness, John Wiley & Sons, Ltd., vol. 34(4), pages 865-886, October.
    20. Jochen Kluve & Boris Augurzky, 2007. "Assessing the performance of matching algorithms when selection into treatment is strong," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(3), pages 533-557.

    More about this item

    Keywords

    Property Condition Disclosure; Housing Price Index; Propensity Score Matching Event Study;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • K11 - Law and Economics - - Basic Areas of Law - - - Property Law
    • L85 - Industrial Organization - - Industry Studies: Services - - - Real Estate Services
    • R21 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis - - - Housing Demand

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uct:uconnp:2005-47. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mark McConnel (email available below). General contact details of provider: https://edirc.repec.org/data/deuctus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.