IDEAS home Printed from https://ideas.repec.org/p/ucr/wpaper/202504.html
   My bibliography  Save this paper

Boosting GMM with Many Instruments When Some Are Invalid and/or Irrelevant

Author

Listed:
  • Hao Hao

    (Global Data Insight & Analytics, Ford Motor Company)

  • Tae-Hwy Lee

    (Department of Economics, University of California Riverside)

Abstract

When the endogenous variable is an unknown function of observable instruments, its conditional mean can be approximated using the sieve functions of observable instruments. We propose a novel instrument selection method, Double-criteria Boosting (DB), that consistently selects only valid and relevant instruments from a large set of candidate instruments. In the Monte Carlo simulation, we compare GMM using DB (DB-GMM) with other estimation methods and demonstrate that DB-GMM gives lower bias and RMSE. In the empirical application to the automobile demand, the DB-GMM estimator is suggesting a more elastic estimate of the price elasticity of demand than the standard 2SLS estimator.

Suggested Citation

  • Hao Hao & Tae-Hwy Lee, 2025. "Boosting GMM with Many Instruments When Some Are Invalid and/or Irrelevant," Working Papers 202504, University of California at Riverside, Department of Economics.
  • Handle: RePEc:ucr:wpaper:202504
    as

    Download full text from publisher

    File URL: https://economics.ucr.edu/repec/ucr/wpaper/202504.pdf
    File Function: First version, 2025
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-681, May.
    2. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    3. Liao, Zhipeng, 2013. "Adaptive Gmm Shrinkage Estimation With Consistent Moment Selection," Econometric Theory, Cambridge University Press, vol. 29(5), pages 857-904, October.
    4. DiTraglia, Francis J., 2016. "Using invalid instruments on purpose: Focused moment selection and averaging for GMM," Journal of Econometrics, Elsevier, vol. 195(2), pages 187-208.
    5. Mehmet Caner & Hao Helen Zhang, 2014. "Adaptive Elastic Net for Generalized Methods of Moments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 30-47, January.
    6. Donald, Stephen G. & Imbens, Guido W. & Newey, Whitney K., 2009. "Choosing instrumental variables in conditional moment restriction models," Journal of Econometrics, Elsevier, vol. 152(1), pages 28-36, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu Cheng & Zhipeng Liao, 2012. "Select the Valid and Relevant Moments: A One-Step Procedure for GMM with Many Moments," PIER Working Paper Archive 12-045, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    2. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    3. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    4. Byunghoon Kang, 2018. "Higher Order Approximation of IV Estimators with Invalid Instruments," Working Papers 257105320, Lancaster University Management School, Economics Department.
    5. Hao Hao & Tae-Hwy Lee, 2023. "Boosting GMM with Many Instruments When Some Are Invalid or Irrelevant," Working Papers 202309, University of California at Riverside, Department of Economics.
    6. Cheng, Xu & Liao, Zhipeng, 2015. "Select the valid and relevant moments: An information-based LASSO for GMM with many moments," Journal of Econometrics, Elsevier, vol. 186(2), pages 443-464.
    7. Qingliang Fan & Yaqian Wu, 2020. "Endogenous Treatment Effect Estimation with some Invalid and Irrelevant Instruments," Papers 2006.14998, arXiv.org.
    8. Yoonseok Lee & Yu Zhou, 2015. "Averaged Instrumental Variables Estimators," Center for Policy Research Working Papers 180, Center for Policy Research, Maxwell School, Syracuse University.
    9. Prosper Donovon & Alastair R. Hall, 2015. "GMM and Indirect Inference: An appraisal of their connections and new results on their properties under second order identification," Economics Discussion Paper Series 1505, Economics, The University of Manchester.
    10. Bai Huang & Tae-Hwy Lee & Aman Ullah, 2017. "A combined estimator of regression models with measurement errors," Indian Economic Review, Springer, vol. 52(1), pages 73-91, December.
    11. Hao Hao & Bai Huang & Tae-hwy Lee, 2024. "Model averaging estimation of panel data models with many instruments and boosting," Journal of Applied Statistics, Taylor & Francis Journals, vol. 51(1), pages 53-69, January.
    12. Dakyung Seong, 2025. "Binary Response Model With Many Weak Instruments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(2), pages 214-230, March.
    13. Jinyuan Chang & Zhentao Shi & Jia Zhang, 2021. "Culling the herd of moments with penalized empirical likelihood," Papers 2108.03382, arXiv.org, revised May 2022.
    14. Muhammad Qasim, 2024. "A weighted average limited information maximum likelihood estimator," Statistical Papers, Springer, vol. 65(5), pages 2641-2666, July.
    15. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Timothy B. Armstrong & Michal Kolesár, 2020. "Sensitivity Analysis using Approximate Moment Condition Models," Working Papers 2020-28, Princeton University. Economics Department..
    17. Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers CWP57/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Frank Windmeijer & Helmut Farbmacher & Neil Davies & George Davey Smith, 2019. "On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1339-1350, July.
    19. Lee, Ji Hyung & Shi, Zhentao & Gao, Zhan, 2022. "On LASSO for predictive regression," Journal of Econometrics, Elsevier, vol. 229(2), pages 322-349.
    20. Marine Carrasco & Guy Tchuente, 2016. "Efficient Estimation with Many Weak Instruments Using Regularization Techniques," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1609-1637, December.
    21. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "High-Dimensional Methods and Inference on Structural and Treatment Effects," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 29-50, Spring.

    More about this item

    Keywords

    Causal inference with high dimensional instruments; Irrelevant instruments; Invalid instruments; Instrument Selection; Machine Learning; Boosting.;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucr:wpaper:202504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kelvin Mac (email available below). General contact details of provider: https://edirc.repec.org/data/deucrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.