IDEAS home Printed from https://ideas.repec.org/p/ucm/doicae/1601.html
   My bibliography  Save this paper

Are the S&P 500 Index and Crude Oil, Natural Gas and Ethanol Futures Related for Intra-Day Data?

Author

Listed:
  • Massimiliano Caporin

    (Department of Economics and Management “Marco Fanno” University of Padova, Italy.)

  • Chia-Lin Chang

    ( Department of Applied Economics Department of Finance National Chung Hsing University, Taiwan.)

  • Michael McAleer

    (Department of Quantitative Finance National Tsing Hua University, Taiwan.)

Abstract

The energy sector is one of the most important in the world, so that time series fluctuations in leading energy sources have been analysed widely. As the leading energy commodities are traded on international stock exchanges, the analysis of the fluctuations in stock and financial derivatives prices and returns have also been investigated extensively in recent years. Much of the empirical analysis has concentrated on using daily, weekly or monthly data, with little research based on intra-day data. The paper analyses the relationships among the S&P 500 Index and futures prices, returns and volatility of three leading energy commodities, namely crude oil, natural gas and ethanol, using intra-day data. The detailed analysis of intra-day temporal aggregation in examining returns relationships and volatility spillovers across the equity and energy futures markets, and the effects of overnight returns, volume, realized volatility, asymmetry, and spillovers across the four financial markets, leads to interesting and useful results for decision making and hedging strategies. The empirical results relating to alternative models of mean and variance feedback and asymmetry for intra-daily returns, asymmetry and volatility spillovers, and dynamic conditional correlations and covariances, show that the relationships between the stock market and alternative energy financial derivatives, specifically futures prices and returns, can and do vary according to the trading range, whether daily or overnight effects are considered, and the temporal aggregation and time frequencies that are used.

Suggested Citation

  • Massimiliano Caporin & Chia-Lin Chang & Michael McAleer, 2016. "Are the S&P 500 Index and Crude Oil, Natural Gas and Ethanol Futures Related for Intra-Day Data?," Documentos de Trabajo del ICAE 2016-01, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
  • Handle: RePEc:ucm:doicae:1601
    as

    Download full text from publisher

    File URL: https://eprints.ucm.es/id/eprint/35504/1/1601.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. McAleer, Michael & Chan, Felix & Marinova, Dora, 2007. "An econometric analysis of asymmetric volatility: Theory and application to patents," Journal of Econometrics, Elsevier, vol. 139(2), pages 259-284, August.
    2. Billio, Monica & Caporin, Massimiliano, 2010. "Market linkages, variance spillovers, and correlation stability: Empirical evidence of financial contagion," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2443-2458, November.
    3. Avdulaj, Krenar & Barunik, Jozef, 2015. "Are benefits from oil–stocks diversification gone? New evidence from a dynamic copula and high frequency data," Energy Economics, Elsevier, vol. 51(C), pages 31-44.
    4. Balcilar, Mehmet & Gupta, Rangan & Wohar, Mark E., 2017. "Common cycles and common trends in the stock and oil markets: Evidence from more than 150years of data," Energy Economics, Elsevier, vol. 61(C), pages 72-86.
    5. Chia-Lin Chang & Yiying Li & Michael McAleer, 2018. "Volatility Spillovers between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice," Energies, MDPI, vol. 11(6), pages 1-19, June.
    6. Michael McAleer & Christian M. Hafner, 2014. "A One Line Derivation of EGARCH," Econometrics, MDPI, vol. 2(2), pages 1-6, June.
    7. Ghorbel, Ahmed & Trabelsi, Abdelwahed, 2014. "Energy portfolio risk management using time-varying extreme value copula methods," Economic Modelling, Elsevier, vol. 38(C), pages 470-485.
    8. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(2), pages 280-310, April.
    9. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    10. Michael McAleer, 2014. "Asymmetry and Leverage in Conditional Volatility Models," Econometrics, MDPI, vol. 2(3), pages 1-6, September.
    11. Demirer, Rıza & Jategaonkar, Shrikant P. & Khalifa, Ahmed A.A., 2015. "Oil price risk exposure and the cross-section of stock returns: The case of net exporting countries," Energy Economics, Elsevier, vol. 49(C), pages 132-140.
    12. repec:bla:ausecp:v:40:y:2001:i:4:p:567-80 is not listed on IDEAS
    13. Kang, Wensheng & Ratti, Ronald A. & Yoon, Kyung Hwan, 2015. "The impact of oil price shocks on the stock market return and volatility relationship," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 34(C), pages 41-54.
    14. Silvano Bordignon & Massimiliano Caporin & Francesco Lisi, 2009. "Periodic Long-Memory GARCH Models," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 60-82.
    15. Michael McAleer & Suhejla Hoti & Felix Chan, 2009. "Structure and Asymptotic Theory for Multivariate Asymmetric Conditional Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 28(5), pages 422-440.
    16. Walters, Cory, 2018. "Price Volatility Transmission between U.S. Biofuel, Corn, and Oil Markets," Cornhusker Economics 307037, University of Nebraska-Lincoln, Department of Agricultural Economics.
    17. Gian Piero Aielli, 2013. "Dynamic Conditional Correlation: On Properties and Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 282-299, July.
    18. Lorenzo Cappiello & Robert F. Engle & Kevin Sheppard, 2006. "Asymmetric Dynamics in the Correlations of Global Equity and Bond Returns," Journal of Financial Econometrics, Oxford University Press, vol. 4(4), pages 537-572.
    19. Saghaian, Sayed & Nemati, Mehdi & Walters, Cory & Chen, Bo, 2018. "Asymmetric Price Volatility Transmission between U.S. Biofuel, Corn, and Oil Markets," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 43(1), January.
    20. Giampiero M. Gallo, 2001. "Modelling the Impact of Overnight Surprises on Intra‐daily Volatility," Australian Economic Papers, Wiley Blackwell, vol. 40(4), pages 567-580, December.
    21. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    22. Basher, Syed Abul & Sadorsky, Perry, 2016. "Hedging emerging market stock prices with oil, gold, VIX, and bonds: A comparison between DCC, ADCC and GO-GARCH," Energy Economics, Elsevier, vol. 54(C), pages 235-247.
    23. Martín-Barragán, Belén & Ramos, Sofia B. & Veiga, Helena, 2015. "Correlations between oil and stock markets: A wavelet-based approach," Economic Modelling, Elsevier, vol. 50(C), pages 212-227.
    24. Bordignon, Silvano & Caporin, Massimiliano & Lisi, Francesco, 2007. "Generalised long-memory GARCH models for intra-daily volatility," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5900-5912, August.
    25. Evan J. McSweeney & Andrew C. Worthington, 2008. "A comparative analysis of oil as a risk factor in Australian industry stock returns, 1980‐2006," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 25(2), pages 131-145, June.
    26. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    27. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    28. Bondia, Ripsy & Ghosh, Sajal & Kanjilal, Kakali, 2016. "International crude oil prices and the stock prices of clean energy and technology companies: Evidence from non-linear cointegration tests with unknown structural breaks," Energy, Elsevier, vol. 101(C), pages 558-565.
    29. Batten, Jonathan A. & Kinateder, Harald & Szilagyi, Peter G. & Wagner, Niklas F., 2017. "Can stock market investors hedge energy risk? Evidence from Asia," Energy Economics, Elsevier, vol. 66(C), pages 559-570.
    30. Gençay, Ramazan & Dacorogna, Michel & Muller, Ulrich A. & Pictet, Olivier & Olsen, Richard, 2001. "An Introduction to High-Frequency Finance," Elsevier Monographs, Elsevier, edition 1, number 9780122796715.
    31. McAleer, Michael & Chan, Felix & Hoti, Suhejla & Lieberman, Offer, 2008. "Generalized Autoregressive Conditional Correlation," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1554-1583, December.
    32. Boudt, Kris & Croux, Christophe & Laurent, Sébastien, 2011. "Robust estimation of intraweek periodicity in volatility and jump detection," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 353-367, March.
    33. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    34. Khalfaoui, R. & Boutahar, M. & Boubaker, H., 2015. "Analyzing volatility spillovers and hedging between oil and stock markets: Evidence from wavelet analysis," Energy Economics, Elsevier, vol. 49(C), pages 540-549.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jawadi, Fredj & Louhichi, Waël & Ameur, Hachmi Ben & Cheffou, Abdoulkarim Idi, 2016. "On oil-US exchange rate volatility relationships: An intraday analysis," Economic Modelling, Elsevier, vol. 59(C), pages 329-334.
    2. Abdelkader Derbali & Tarek Chebbi, 2018. "Dynamic Equicorrelation between S&P500 Index and S&P GSCI," Working Papers hal-01695995, HAL.
    3. Jiang, Ping & Liu, Zhenkun & Wang, Jianzhou & Zhang, Lifang, 2021. "Decomposition-selection-ensemble forecasting system for energy futures price forecasting based on multi-objective version of chaos game optimization algorithm," Resources Policy, Elsevier, vol. 73(C).
    4. Bonaccolto, G. & Caporin, M. & Gupta, R., 2018. "The dynamic impact of uncertainty in causing and forecasting the distribution of oil returns and risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 446-469.
    5. Salisu, Afees A. & Raheem, Ibrahim D. & Ndako, Umar B., 2019. "A sectoral analysis of asymmetric nexus between oil price and stock returns," International Review of Economics & Finance, Elsevier, vol. 61(C), pages 241-259.
    6. Ngo Thai Hung, 2020. "Identifying the Dynamic Connectedness between Propane and Oil Prices: Evidence from Wavelet Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 315-326.
    7. Jiaying Peng & Zhenghui Li & Benjamin M. Drakeford, 2020. "Dynamic Characteristics of Crude Oil Price Fluctuation—From the Perspective of Crude Oil Price Influence Mechanism," Energies, MDPI, vol. 13(17), pages 1-19, August.
    8. Chang, Chia-Lin & McAleer, Michael & Wang, Yu-Ann, 2020. "Herding behaviour in energy stock markets during the Global Financial Crisis, SARS, and ongoing COVID-19," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chia-Lin Chang & Yiying Li & Michael McAleer, 2018. "Volatility Spillovers between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice," Energies, MDPI, vol. 11(6), pages 1-19, June.
    2. Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2018. "Connecting VIX and Stock Index ETF with VAR and Diagonal BEKK," JRFM, MDPI, vol. 11(4), pages 1-25, September.
    3. Batten, Jonathan A. & Kinateder, Harald & Szilagyi, Peter G. & Wagner, Niklas F., 2019. "Time-varying energy and stock market integration in Asia," Energy Economics, Elsevier, vol. 80(C), pages 777-792.
    4. Chia-Lin Chang & Michael McAleer & Jiarong Tian, 2019. "Modeling and Testing Volatility Spillovers in Oil and Financial Markets for the USA, the UK, and China," Energies, MDPI, vol. 12(8), pages 1-24, April.
    5. Chang, Chia-Lin & McAleer, Michael & Wang, Yu-Ann, 2018. "Modelling volatility spillovers for bio-ethanol, sugarcane and corn spot and futures prices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1002-1018.
    6. Batten, Jonathan A. & Kinateder, Harald & Szilagyi, Peter G. & Wagner, Niklas F., 2017. "Can stock market investors hedge energy risk? Evidence from Asia," Energy Economics, Elsevier, vol. 66(C), pages 559-570.
    7. Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2016. "Connecting VIX and Stock Index ETF," Tinbergen Institute Discussion Papers 16-010/III, Tinbergen Institute, revised 23 Jan 2017.
    8. Michael McAleer, 2009. "The Ten Commandments For Optimizing Value‐At‐Risk And Daily Capital Charges," Journal of Economic Surveys, Wiley Blackwell, vol. 23(5), pages 831-849, December.
    9. Chang, Chia-Lin & McAleer, Michael & Wang, Yanghuiting, 2018. "Testing Co-Volatility spillovers for natural gas spot, futures and ETF spot using dynamic conditional covariances," Energy, Elsevier, vol. 151(C), pages 984-997.
    10. Chia-Lin Chang & Michael McAleer & Roengchai Tansuchat, 2009. "Modelling Conditional Correlations for Risk Diversification in Crude Oil Markets," CIRJE F-Series CIRJE-F-640, CIRJE, Faculty of Economics, University of Tokyo.
    11. Chang, C-L. & Hsieh, T-L. & McAleer, M.J., 2016. "How are VIX and Stock Index ETF Related?," Econometric Institute Research Papers EI2016-07, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    12. Chia-Lin Chang & Michael McAleer & Chien-Hsun Wang, 2017. "An Econometric Analysis of ETF and ETF Futures in Financial and Energy Markets Using Generated Regressors," IJFS, MDPI, vol. 6(1), pages 1-24, December.
    13. Chia-Lin Chang & Chia-Ping Liu & Michael McAleer, 2016. "Volatility Spillovers for Spot, Futures, and ETF Prices in Energy and Agriculture," Tinbergen Institute Discussion Papers 16-046/III, Tinbergen Institute.
    14. Chia-Lin Chang & Shu-Han Hsu & Michael McAleer, 2018. "Risk Spillovers in Returns for Chinese and International Tourists to Taiwan," Tinbergen Institute Discussion Papers 18-031/III, Tinbergen Institute.
    15. Morema, Kgotso & Bonga-Bonga, Lumengo, 2018. "The impact of oil and gold price fluctuations on the South African equity market: volatility spillovers and implications for portfolio management," MPRA Paper 87637, University Library of Munich, Germany.
    16. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2010. "Analyzing and forecasting volatility spillovers, asymmetries and hedging in major oil markets," Energy Economics, Elsevier, vol. 32(6), pages 1445-1455, November.
    17. Massimiliano Caporin & Michael McAleer, 2011. "Thresholds, news impact surfaces and dynamic asymmetric multivariate GARCH," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(2), pages 125-163, May.
    18. Esparcia, Carlos & Jareño, Francisco & Umar, Zaghum, 2022. "Revisiting the safe haven role of Gold across time and frequencies during the COVID-19 pandemic," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
    19. Chang, Chia-Lin & González-Serrano, Lydia & Jimenez-Martin, Juan-Angel, 2013. "Currency hedging strategies using dynamic multivariate GARCH," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 164-182.
    20. Dahiru A. Balaa & Taro Takimotob, 2017. "Stock markets volatility spillovers during financial crises: A DCC-MGARCH with skewed-t density approach," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 17(1), pages 25-48, March.

    More about this item

    Keywords

    Trading range; Intra-day prices and returns; S&P 500 Index; Crude oil futures; Natural gas futures; Ethanol futures; Overnight returns; Overnight volume; Overnight realized volatility; Asymmetry; Spillovers.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucm:doicae:1601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Águeda González Abad (email available below). General contact details of provider: https://edirc.repec.org/data/feucmes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.