IDEAS home Printed from https://ideas.repec.org/a/mes/emfitr/v54y2018i15p3552-3565.html
   My bibliography  Save this article

Monetary Policy Reaction Functions of the TICKs: A Quantile Regression Approach

Author

Listed:
  • Christina Christou
  • Ruthira Naraidoo
  • Rangan Gupta
  • Won Joong Kim

Abstract

This study investigates how Taiwan, India, China, and Korea (TICKs) set interest rates in the context of policy reaction functions using a quantile-based approach. Our results indicate the tendency of a milder response to inflation at low interest rates and greater response at higher quantiles of interest rates, where inflation is presumably higher than desired for China and South Korea. While the response to inflation over the quantiles is significant for India, yet the Taylor principle is less likely to hold. For Taiwan, the results imply that another instrument is employed to deal with its official managed floating currency.

Suggested Citation

  • Christina Christou & Ruthira Naraidoo & Rangan Gupta & Won Joong Kim, 2018. "Monetary Policy Reaction Functions of the TICKs: A Quantile Regression Approach," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 54(15), pages 3552-3565, December.
  • Handle: RePEc:mes:emfitr:v:54:y:2018:i:15:p:3552-3565
    DOI: 10.1080/1540496X.2017.1422429
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1540496X.2017.1422429
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1540496X.2017.1422429?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Richard Clarida & Jordi Galí & Mark Gertler, 2000. "Monetary Policy Rules and Macroeconomic Stability: Evidence and Some Theory," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 115(1), pages 147-180.
    3. Guido W. Imbens & Whitney K. Newey, 2009. "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity," Econometrica, Econometric Society, vol. 77(5), pages 1481-1512, September.
    4. Alberto Abadie & Joshua Angrist & Guido Imbens, 2002. "Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings," Econometrica, Econometric Society, vol. 70(1), pages 91-117, January.
    5. Thanaset Chevapatrakul & Tae‐Hwan Kim & Paul Mizen, 2009. "The Taylor Principle and Monetary Policy Approaching a Zero Bound on Nominal Rates: Quantile Regression Results for the United States and Japan," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(8), pages 1705-1723, December.
    6. Aizenman, Joshua & Hutchison, Michael & Noy, Ilan, 2011. "Inflation Targeting and Real Exchange Rates in Emerging Markets," World Development, Elsevier, vol. 39(5), pages 712-724, May.
    7. Lee, Sokbae, 2007. "Endogeneity in quantile regression models: A control function approach," Journal of Econometrics, Elsevier, vol. 141(2), pages 1131-1158, December.
    8. Ma, Lingjie & Koenker, Roger, 2006. "Quantile regression methods for recursive structural equation models," Journal of Econometrics, Elsevier, vol. 134(2), pages 471-506, October.
    9. Swamy, P.A.V.B. & Tavlas, George S. & Chang, I-Lok, 2005. "How stable are monetary policy rules: estimating the time-varying coefficients in monetary policy reaction function for the US," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 575-590, April.
    10. Clarida, Richard & Gali, Jordi & Gertler, Mark, 1998. "Monetary policy rules in practice Some international evidence," European Economic Review, Elsevier, vol. 42(6), pages 1033-1067, June.
    11. Aksoy, Yunus & Orphanides, Athanasios & Small, David & Wieland, Volker & Wilcox, David, 2006. "A quantitative exploration of the opportunistic approach to disinflation," Journal of Monetary Economics, Elsevier, vol. 53(8), pages 1877-1893, November.
    12. Lee, Ji Hyung, 2016. "Predictive quantile regression with persistent covariates: IVX-QR approach," Journal of Econometrics, Elsevier, vol. 192(1), pages 105-118.
    13. Zhang, Wenlang, 2009. "China's monetary policy: Quantity versus price rules," Journal of Macroeconomics, Elsevier, vol. 31(3), pages 473-484, September.
    14. Dolado, Juan J. & Maria-Dolores, Ramon & Naveira, Manuel, 2005. "Are monetary-policy reaction functions asymmetric?: The role of nonlinearity in the Phillips curve," European Economic Review, Elsevier, vol. 49(2), pages 485-503, February.
    15. Eichengreen, Barry, 2004. "Monetary and Exchange Rate Policy in Korea: Assessments and Policy Issues," CEPR Discussion Papers 4676, C.E.P.R. Discussion Papers.
    16. Robert Neil McCauley, 2006. "Understanding monetary policy in Malaysia and Thailand: objectives, instruments and independence," BIS Papers chapters, in: Bank for International Settlements (ed.), Monetary policy in Asia: approaches and implementation, volume 31, pages 172-198, Bank for International Settlements.
    17. Andrew Chesher, 2003. "Identification in Nonseparable Models," Econometrica, Econometric Society, vol. 71(5), pages 1405-1441, September.
    18. Burdekin, Richard C.K. & Siklos, Pierre L., 2008. "What has driven Chinese monetary policy since 1990? Investigating the People's bank's policy rule," Journal of International Money and Finance, Elsevier, vol. 27(5), pages 847-859, September.
    19. Ming-Jen Chang & Chih-Chung Chien, 2018. "Exchange rate prediction using monetary policy rules in Taiwan," Asia-Pacific Journal of Accounting & Economics, Taylor & Francis Journals, vol. 25(3-4), pages 388-403, May.
    20. Wolters, Maik H., 2012. "Estimating monetary policy reaction functions using quantile regressions," Journal of Macroeconomics, Elsevier, vol. 34(2), pages 342-361.
    21. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
    22. V. Chernozhukov & C. Hansen, 2013. "Quantile Models with Endogeneity," Annual Review of Economics, Annual Reviews, vol. 5(1), pages 57-81, May.
    23. Moura, Marcelo L. & de Carvalho, Alexandre, 2010. "What can Taylor rules say about monetary policy in Latin America?," Journal of Macroeconomics, Elsevier, vol. 32(1), pages 392-404, March.
    24. Richard H. Clarida & Jordi Gali & Mark Gertler, 1998. "Monetary policy rules in practice," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
    25. Shengzu Wang & Jagdish Handa, 2007. "Monetary policy rules under a fixed exchange rate regime: empirical evidence from China," Applied Financial Economics, Taylor & Francis Journals, vol. 17(12), pages 941-950.
    26. Singh, Kanhaiya & Kalirajan, Kaliappa P., 2006. "Monetary Policy in India: Objectives, Reaction Function and Policy Effectiveness," Review of Applied Economics, Lincoln University, Department of Financial and Business Systems, vol. 2(2), pages 1-19.
    27. William Miles & Sam Schreyer, 2012. "Is monetary policy non-linear in Indonesia, Korea, Malaysia, and Thailand? A quantile regression analysis," Asian-Pacific Economic Literature, The Crawford School, The Australian National University, vol. 26(2), pages 155-166, November.
    28. Cukierman Alex & Muscatelli Anton, 2008. "Nonlinear Taylor Rules and Asymmetric Preferences in Central Banking: Evidence from the United Kingdom and the United States," The B.E. Journal of Macroeconomics, De Gruyter, vol. 8(1), pages 1-31, February.
    29. Chernozhukov, Victor & Hansen, Christian, 2008. "Instrumental variable quantile regression: A robust inference approach," Journal of Econometrics, Elsevier, vol. 142(1), pages 379-398, January.
    30. Taylor, John B., 1993. "Discretion versus policy rules in practice," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 39(1), pages 195-214, December.
    31. Frank Smets & Raf Wouters, 2003. "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, MIT Press, vol. 1(5), pages 1123-1175, September.
    32. Chernozhukov, Victor & Hansen, Christian, 2006. "Instrumental quantile regression inference for structural and treatment effect models," Journal of Econometrics, Elsevier, vol. 132(2), pages 491-525, June.
    33. Alexander Torgovitsky, 2015. "Identification of Nonseparable Models Using Instruments With Small Support," Econometrica, Econometric Society, vol. 83(3), pages 1185-1197, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christina Christou & Ruthira Naraidoo & Rangan Gupta & Christis Hassapis, 2022. "Monetary policy reaction to uncertainty in Japan: Evidence from a quantile‐on‐quantile interest rate rule," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2041-2053, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Apergis, Nicholas & Christou, Christina, 2015. "The behaviour of the bank lending channel when interest rates approach the zero lower bound: Evidence from quantile regressions," Economic Modelling, Elsevier, vol. 49(C), pages 296-307.
    2. Gabriela Bezerra De Medeiros & Marcelo Savino Portugal & Edilean Kleber Da Silva Bejarano Aragon, 2016. "Endogeneity And Nonlinearities In Central Bank Of Brazil’S Reaction Functions: An Inverse Quantile Regression Approach," Anais do XLIII Encontro Nacional de Economia [Proceedings of the 43rd Brazilian Economics Meeting] 061, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    3. Gabriela Bezerra Medeiros & Marcelo Savino Portugal & Edilean Kleber da Silva Bejarano Aragón, 2017. "Endogeneity and nonlinearities in Central Bank of Brazil’s reaction functions: an inverse quantile regression approach," Empirical Economics, Springer, vol. 53(4), pages 1503-1527, December.
    4. Hiroaki Kaido & Kaspar Wüthrich, 2021. "Decentralization estimators for instrumental variable quantile regression models," Quantitative Economics, Econometric Society, vol. 12(2), pages 443-475, May.
    5. Christina Christou & Ruthira Naraidoo & Rangan Gupta & Christis Hassapis, 2022. "Monetary policy reaction to uncertainty in Japan: Evidence from a quantile‐on‐quantile interest rate rule," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2041-2053, April.
    6. Caporale, Guglielmo Maria & Helmi, Mohamad Husam & Çatık, Abdurrahman Nazif & Menla Ali, Faek & Akdeniz, Coşkun, 2018. "Monetary policy rules in emerging countries: Is there an augmented nonlinear taylor rule?," Economic Modelling, Elsevier, vol. 72(C), pages 306-319.
    7. Wüthrich, Kaspar, 2019. "A closed-form estimator for quantile treatment effects with endogeneity," Journal of Econometrics, Elsevier, vol. 210(2), pages 219-235.
    8. Victor Chernozhukov & Christian Hansen & Kaspar Wuthrich, 2020. "Instrumental Variable Quantile Regression," Papers 2009.00436, arXiv.org.
    9. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    10. Tae-Hwan Kim & Christophe Muller, 2017. "A Robust Test of Exogeneity Based on Quantile Regressions," Working Papers halshs-01508067, HAL.
    11. Shen, Chung-Hua & Lin, Kun-Li & Guo, Na, 2016. "Hawk or dove: Switching regression model for the monetary policy reaction function in China," Pacific-Basin Finance Journal, Elsevier, vol. 36(C), pages 94-111.
    12. Muller, Christophe, 2018. "Heterogeneity and nonconstant effect in two-stage quantile regression," Econometrics and Statistics, Elsevier, vol. 8(C), pages 3-12.
    13. Tae-Hwan Kim & Christophe Muller, 2013. "A Test for Endogeneity in Conditional Quantiles," Working Papers halshs-00854527, HAL.
    14. Milas, Costas & Naraidoo, Ruthira, 2012. "Financial conditions and nonlinearities in the European Central Bank (ECB) reaction function: In-sample and out-of-sample assessment," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 173-189, January.
    15. Santiago Pereda Fernández, 2016. "Estimation of counterfactual distributions with a continuous endogenous treatment," Temi di discussione (Economic working papers) 1053, Bank of Italy, Economic Research and International Relations Area.
    16. Kaspar W thrich, 2015. "Semiparametric estimation of quantile treatment effects with endogeneity," Diskussionsschriften dp1509, Universitaet Bern, Departement Volkswirtschaft.
    17. Wolters, Maik H., 2012. "Estimating monetary policy reaction functions using quantile regressions," Journal of Macroeconomics, Elsevier, vol. 34(2), pages 342-361.
    18. Christou Christina & Naraidoo Ruthira & Gupta Rangan, 2020. "Conventional and unconventional monetary policy reaction to uncertainty in advanced economies: evidence from quantile regressions," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(3), pages 1-17, June.
    19. Jun, Sung Jae, 2008. "Weak identification robust tests in an instrumental quantile model," Journal of Econometrics, Elsevier, vol. 144(1), pages 118-138, May.
    20. Victor Chernozhukov & Iván Fernández‐Val & Whitney Newey & Sami Stouli & Francis Vella, 2020. "Semiparametric estimation of structural functions in nonseparable triangular models," Quantitative Economics, Econometric Society, vol. 11(2), pages 503-533, May.

    More about this item

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy
    • E58 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Central Banks and Their Policies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mes:emfitr:v:54:y:2018:i:15:p:3552-3565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/MREE20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.