IDEAS home Printed from https://ideas.repec.org/p/tor/tecipa/tecipa-679.html
   My bibliography  Save this paper

Under-Identification of Structural Models Based on Timing and Information Set Assumptions

Author

Listed:
  • Daniel Ackerberg
  • Garth Frazer
  • Kyoo il Kim
  • Yao Luo
  • Yingjun Su

Abstract

We revisit identification based on timing and information set assumptions in structural models, which have been used in the context of production functions, demand equations, and hedonic pricing models (e.g. Olley and Pakes (1996), Blundell and Bond (2000)). First, we demonstrate a general under-identification problem using these assumptions, illustrating this with a simple version of the Blundell-Bond dynamic panel model. In particular, the basic moment conditions can yield multiple discrete solutions: one at the persistence parameter in the main equation and another at the persistence parameter governing the regressor. Second, we propose possible solutions based on sign restrictions and an augmented moment approach. We show the identification of our approach and propose a consistent estimation procedure. Our Monte Carlo simulations illustrate the underidentification issue and finite sample performance of our proposed estimator. Lastly, we show that the problem persists in many alternative models of the regressor but disappears in some models under stronger assumptions.

Suggested Citation

  • Daniel Ackerberg & Garth Frazer & Kyoo il Kim & Yao Luo & Yingjun Su, 2020. "Under-Identification of Structural Models Based on Timing and Information Set Assumptions," Working Papers tecipa-679, University of Toronto, Department of Economics.
  • Handle: RePEc:tor:tecipa:tecipa-679
    as

    Download full text from publisher

    File URL: https://www.economics.utoronto.ca/public/workingPapers/tecipa-679.pdf
    File Function: Main Text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sentana, Enrique, 2024. "Finite underidentification," Journal of Econometrics, Elsevier, vol. 240(1).
    2. Alonso-Borrego, Cesar & Arellano, Manuel, 1999. "Symmetrically Normalized Instrumental-Variable Estimation Using Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 36-49, January.
    3. Robin S. Lee, 2013. "Vertical Integration and Exclusivity in Platform and Two-Sided Markets," American Economic Review, American Economic Association, vol. 103(7), pages 2960-3000, December.
    4. Kyoo il Kim & Yao Luo & Yingjun Su, 2019. "A robust approach to estimating production functions: Replication of the ACF procedure," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(4), pages 612-619, June.
    5. Hu, Yingyao & Shum, Matthew, 2012. "Nonparametric identification of dynamic models with unobserved state variables," Journal of Econometrics, Elsevier, vol. 171(1), pages 32-44.
    6. Olley, G Steven & Pakes, Ariel, 1996. "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, Econometric Society, vol. 64(6), pages 1263-1297, November.
    7. Daniel A. Ackerberg & Kevin Caves & Garth Frazer, 2015. "Identification Properties of Recent Production Function Estimators," Econometrica, Econometric Society, vol. 83, pages 2411-2451, November.
    8. Paul L. E. Grieco & Shengyu Li & Hongsong Zhang, 2016. "Production Function Estimation With Unobserved Input Price Dispersion," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 57, pages 665-690, May.
    9. Richard Blundell & Stephen Bond, 2000. "GMM Estimation with persistent panel data: an application to production functions," Econometric Reviews, Taylor & Francis Journals, vol. 19(3), pages 321-340.
    10. Amit Gandhi & Salvador Navarro & David A. Rivers, 2020. "On the Identification of Gross Output Production Functions," Journal of Political Economy, University of Chicago Press, vol. 128(8), pages 2973-3016.
    11. Charles F. Manski & John V. Pepper, 2000. "Monotone Instrumental Variables, with an Application to the Returns to Schooling," Econometrica, Econometric Society, vol. 68(4), pages 997-1012, July.
    12. Patrick Bajari & Jane Cooley Fruehwirth & Kyoo il Kim & Christopher Timmins, 2012. "A Rational Expectations Approach to Hedonic Price Regressions with Time-Varying Unobserved Product Attributes: The Price of Pollution," American Economic Review, American Economic Association, vol. 102(5), pages 1898-1926, August.
    13. Kelly C. Bishop & Alvin D. Murphy, 2019. "Valuing Time-Varying Attributes Using the Hedonic Model: When Is a Dynamic Approach Necessary?," The Review of Economics and Statistics, MIT Press, vol. 101(1), pages 134-145, March.
    14. James Levinsohn & Amil Petrin, 2003. "Estimating Production Functions Using Inputs to Control for Unobservables," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(2), pages 317-341.
    15. Andrew Sweeting, 2009. "The strategic timing incentives of commercial radio stations: An empirical analysis using multiple equilibria," RAND Journal of Economics, RAND Corporation, vol. 40(4), pages 710-742, December.
    16. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    17. Matthew Grennan, 2013. "Price Discrimination and Bargaining: Empirical Evidence from Medical Devices," American Economic Review, American Economic Association, vol. 103(1), pages 145-177, February.
    18. Paul L. E. Grieco & Shengyu Li & Hongsong Zhang, 2016. "Production Function Estimation With Unobserved Input Price Dispersion," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 57(2), pages 665-690, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emir Malikov & Shunan Zhao & Jingfang Zhang, 2024. "A System Approach to Structural Identification of Production Functions with Multi-Dimensional Productivity," Advances in Econometrics, in: Essays in Honor of Subal Kumbhakar, volume 46, pages 211-263, Emerald Group Publishing Limited.
    2. Maarten De Ridder & Basile Grassi & Giovanni Morzenti, 2021. "The Hitchhiker’s Guide to Markup Estimation," Working Papers 677, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    3. Sentana, Enrique, 2024. "Finite underidentification," Journal of Econometrics, Elsevier, vol. 240(1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fei Jia & Minjie Huang & Shunan Zhao, 2024. "Estimation of endogenous firm productivity without instruments: an application to foreign investment," Journal of Productivity Analysis, Springer, vol. 61(2), pages 135-155, April.
    2. Paul Schrimpf & Michio Suzuki & Hiroyuki Kasahara, 2015. "Identification and Estimation of Production Function with Unobserved Heterogeneity," 2015 Meeting Papers 924, Society for Economic Dynamics.
    3. Emir Malikov & Shunan Zhao & Jingfang Zhang, 2024. "A System Approach to Structural Identification of Production Functions with Multi-Dimensional Productivity," Advances in Econometrics, in: Essays in Honor of Subal Kumbhakar, volume 46, pages 211-263, Emerald Group Publishing Limited.
    4. Geoffrey Barrows & Hélène Ollivier & Ariell Reshef, 2023. "Production Function Estimation with Multi-Destination Firms," CESifo Working Paper Series 10716, CESifo.
    5. Ioannis Bournakis & Mike Tsionas, 2024. "A Non‐parametric Estimation of Productivity with Idiosyncratic and Aggregate Shocks: The Role of Research and Development (R&D) and Corporate Tax," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(3), pages 641-671, June.
    6. Mauro Caselli & Arpita Chatterjee & Shengyu Li, 2023. "Productivity and Quality of Multi-product Firms," Discussion Papers 2023-10, School of Economics, The University of New South Wales.
    7. Victor Aguirregabiria & Margaret Slade, 2017. "Empirical models of firms and industries," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(5), pages 1445-1488, December.
    8. James Harrigan & Ariell Reshef & Farid Toubal, 2018. "Techies, Trade, and Skill-Biased Productivity," NBER Working Papers 25295, National Bureau of Economic Research, Inc.
    9. van Heuvelen, Gerrit Hugo & Bettendorf, Leon & Meijerink, Gerdien, 2021. "Markups in a dual labour market: The case of the Netherlands," International Journal of Industrial Organization, Elsevier, vol. 77(C).
    10. Sampi Bravo,James Robert Ezequiel & Jooste,Charl & Vostroknutova,Ekaterina, 2021. "Identification Properties for Estimating the Impact of Regulation on Markups and Productivity," Policy Research Working Paper Series 9523, The World Bank.
    11. Paul L. E. Grieco & Shengyu Li & Hongsong Zhang, 2022. "Input prices, productivity, and trade dynamics: long‐run effects of liberalization on Chinese paint manufacturers," RAND Journal of Economics, RAND Corporation, vol. 53(3), pages 516-560, September.
    12. Jamil, Nida & Chaudhry, Theresa Thompson & Chaudhry, Azam, 2022. "Trading textiles along the new silk route: The impact on Pakistani firms of gaining market access to China," Journal of Development Economics, Elsevier, vol. 158(C).
    13. Li, Tong & Sasaki, Yuya, 2024. "Identification of heterogeneous elasticities in gross-output production functions," Journal of Econometrics, Elsevier, vol. 238(2).
    14. Bruno Merlevede & Angelos Theodorakopoulos, 2018. "Productivity Effects of Internationalisation Through the Domestic Supply Chain: Evidence from Europe," Working Papers of VIVES - Research Centre for Regional Economics 627689, KU Leuven, Faculty of Economics and Business (FEB), VIVES - Research Centre for Regional Economics.
    15. Bruno Merlevede & Angelos Theodorakopoulos, 2021. "Productivity effects of internationalisation through the domestic supply chain," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 808-832, September.
    16. Shunan Zhao & Bing Qian & Subal C. Kumbhakar, 2020. "Estimation of productivity and markups with price dispersion: Evidence from Chinese manufacturing during economic transition," Southern Economic Journal, John Wiley & Sons, vol. 87(2), pages 666-699, October.
    17. Emir Malikov & Jingfang Zhang & Shunan Zhao & Subal C. Kumbhakar, 2023. "Accounting for Cross-Location Technological Heterogeneity in the Measurement of Operations Efficiency and Productivity," Papers 2302.13430, arXiv.org.
    18. Laurens Cherchye & Thomas Demuynck & Bram De Rock & Cédric Duprez & Glenn Magerman & Marijn Verschelde, 2021. "Structural Identification of Productivity under Biased Technological Change∗," Working Papers ECARES 2021-28, ULB -- Universite Libre de Bruxelles.
    19. Ensar Yılmaz & Zeynep Kaplan, 2022. "Heterogeneity of market power: firm-level evidence," Economic Change and Restructuring, Springer, vol. 55(2), pages 1207-1228, May.
    20. David Van Dijcke, 2022. "On the Non-Identification of Revenue Production Functions," Papers 2212.04620, arXiv.org, revised May 2024.

    More about this item

    Keywords

    Production Function; Identification; Timing and Information Set Assumptions; Market Persistence Factor; Monte Carlo Simulation;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tor:tecipa:tecipa-679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePEc Maintainer (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.