IDEAS home Printed from https://ideas.repec.org/p/tky/fseres/2015cf982.html
   My bibliography  Save this paper

Small Area Predictors with Dual Shrinkage of Means and Variances

Author

Listed:
  • Hiromasa Tamae

    (Graduate School of Economics, The University of Tokyo)

  • Tatsuya Kubokawa

    (Faculty of Economics, The University of Tokyo)

Abstract

The paper concerns small-area estimation in the Fay-Herriot type area-level model with random dispersions, which models the case that the sampling errors change from area to area. The resulting Bayes estimator shrinks both means and variances, but needs numerical computation to provide the estimates. In this paper, an approximated empirical Bayes (AEB) estimator with a closed form is suggested. The model parameters are estimated via the moment method, and the mean squared error of the AEB is estimated via the single parametric bootstrap method. The benchmarked estimator and a second-order unbiased estimator of the mean squared error are also derived. --

Suggested Citation

  • Hiromasa Tamae & Tatsuya Kubokawa, 2015. "Small Area Predictors with Dual Shrinkage of Means and Variances," CIRJE F-Series CIRJE-F-982, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2015cf982
    as

    Download full text from publisher

    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2015/2015cf982.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gauri Sankar Datta & J. N. K. Rao & David Daniel Smith, 2005. "On measuring the variability of small area estimators under a basic area level model," Biometrika, Biometrika Trust, vol. 92(1), pages 183-196, March.
    2. Tapabrata Maiti & Hao Ren & Samiran Sinha, 2014. "Prediction Error of Small Area Predictors Shrinking Both Means and Variances," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 775-790, September.
    3. G. Datta & M. Ghosh & R. Steorts & J. Maples, 2011. "Bayesian benchmarking with applications to small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 574-588, November.
    4. Wang, Junyuan & Fuller, Wayne A., 2003. "The Mean Squared Error of Small Area Predictors Constructed With Estimated Area Variances," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 716-723, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malay Ghosh & Tatsuya Kubokawa & Yuki Kawakubo, 2014. "Benchmarked Empirical Bayes Methods in Multiplicative Area-level Models with Risk Evaluation," CIRJE F-Series CIRJE-F-918, CIRJE, Faculty of Economics, University of Tokyo.
    2. J. N. K. Rao, 2015. "Inferential issues in model-based small area estimation: some new developments," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 491-510, December.
    3. repec:csb:stintr:v:17:y:2016:i:1:p:9-24 is not listed on IDEAS
    4. Erciulescu Andreea L. & Fuller Wayne A., 2016. "Small Area Prediction Under Alternative Model Specifications," Statistics in Transition New Series, Statistics Poland, vol. 17(1), pages 9-24, March.
    5. Andreea L. Erciulescu & Wayne A. Fuller, 2016. "Small Area Prediction Under Alternative Model Specifications," Statistics in Transition New Series, Polish Statistical Association, vol. 17(1), pages 9-24, March.
    6. Yoshimori, Masayo & Lahiri, Partha, 2014. "A new adjusted maximum likelihood method for the Fay–Herriot small area model," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 281-294.
    7. J. N. K. Rao, 2015. "Inferential Issues In Model-Based Small Area Estimation: Some New Developments," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 491-510, December.
    8. Malay Ghosh, 2020. "Small area estimation: its evolution in five decades," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 1-22, August.
    9. Rao J. N. K., 2015. "Inferential Issues in Model-Based Small Area Estimation: Some New Developments," Statistics in Transition New Series, Statistics Poland, vol. 16(4), pages 491-510, December.
    10. Sugasawa, Shonosuke & Kubokawa, Tatsuya, 2017. "Transforming response values in small area prediction," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 47-60.
    11. Shonosuke Sugasawa & Tatsuya Kubokawa, 2015. "Heteroscedastic Nested Error Regression Models with Variance Functions," CIRJE F-Series CIRJE-F-978, CIRJE, Faculty of Economics, University of Tokyo.
    12. Shonosuke Sugasawa & Tatsuya Kubokawa & J. N. K. Rao, 2018. "Small area estimation via unmatched sampling and linking models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 407-427, June.
    13. Tatsuya Kubokawa & William E. Strawderman, 2011. "Admissibility and Minimaxity of Benchmarked Shrinkage Estimators," CIRJE F-Series CIRJE-F-809, CIRJE, Faculty of Economics, University of Tokyo.
    14. Shonosuke Sugasawa & Hiromasa Tamae & Tatsuya Kubokawa, 2017. "Bayesian Estimators for Small Area Models Shrinking Both Means and Variances," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 150-167, March.
    15. Ghosh Malay, 2020. "Small area estimation: its evolution in five decades," Statistics in Transition New Series, Statistics Poland, vol. 21(4), pages 1-22, August.
    16. Tatsuya Kubokawa, 2012. "Mixed Effects Prediction under Benchmarking and Applications to Small Area Estimation," CIRJE F-Series CIRJE-F-832, CIRJE, Faculty of Economics, University of Tokyo.
    17. Kubokawa, Tatsuya, 2013. "Constrained empirical Bayes estimator and its uncertainty in normal linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 377-392.
    18. Kubokawa, Tatsuya & Nagashima, Bui, 2012. "Parametric bootstrap methods for bias correction in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 1-16.
    19. Tatsuya Kubokawa & Mana Hasukawa & Kunihiko Takahashi, 2012. "On Measuring Uncertainty of Benchmarked Predictors with Application to Disease Risk Estimatee," CIRJE F-Series CIRJE-F-861, CIRJE, Faculty of Economics, University of Tokyo.
    20. Berg, Emily J. & Fuller, Wayne A., 2012. "Estimators of error covariance matrices for small area prediction," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2949-2962.
    21. Stefano Marchetti & Luca Secondi, 2017. "Estimates of Household Consumption Expenditure at Provincial Level in Italy by Using Small Area Estimation Methods: “Real” Comparisons Using Purchasing Power Parities," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 131(1), pages 215-234, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2015cf982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CIRJE administrative office (email available below). General contact details of provider: https://edirc.repec.org/data/ritokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.