IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i10p2949-2962.html
   My bibliography  Save this article

Estimators of error covariance matrices for small area prediction

Author

Listed:
  • Berg, Emily J.
  • Fuller, Wayne A.

Abstract

Prediction for the mixed model requires estimates of covariance matrices. There is often a direct estimate of the “within area” covariance matrix, and for survey samples this is an estimate of the sampling covariance matrix. The estimated covariance matrix may have large sampling variance, suggesting parametric modeling for the matrix. The model can play a role at various points in the construction of predictions for proportions for small areas. Simulations demonstrate that efficiency for predictions is improved by using a model for the covariance matrix in the estimator of mean parameters and in constructing the coefficients in the predictor.

Suggested Citation

  • Berg, Emily J. & Fuller, Wayne A., 2012. "Estimators of error covariance matrices for small area prediction," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2949-2962.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:10:p:2949-2962
    DOI: 10.1016/j.csda.2012.02.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312001120
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.02.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Junyuan & Fuller, Wayne A., 2003. "The Mean Squared Error of Small Area Predictors Constructed With Estimated Area Variances," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 716-723, January.
    2. Li‐Chun Zhang & Raymond L. Chambers, 2004. "Small area estimates for cross‐classifications," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 479-496, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. María Dolores Esteban & María José Lombardía & Esther López-Vizcaíno & Domingo Morales & Agustín Pérez, 2020. "Small area estimation of proportions under area-level compositional mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 793-818, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. N. K. Rao, 2015. "Inferential issues in model-based small area estimation: some new developments," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 491-510, December.
    2. repec:csb:stintr:v:17:y:2016:i:1:p:9-24 is not listed on IDEAS
    3. María Dolores Esteban & María José Lombardía & Esther López-Vizcaíno & Domingo Morales & Agustín Pérez, 2020. "Small area estimation of proportions under area-level compositional mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 793-818, September.
    4. Erciulescu Andreea L. & Fuller Wayne A., 2016. "Small Area Prediction Under Alternative Model Specifications," Statistics in Transition New Series, Polish Statistical Association, vol. 17(1), pages 9-24, March.
    5. Dian Handayani & Henk Folmer & Anang Kurnia & Khairil Anwar Notodiputro, 2018. "The spatial empirical Bayes predictor of the small area mean for a lognormal variable of interest and spatially correlated random effects," Empirical Economics, Springer, vol. 55(1), pages 147-167, August.
    6. Runge Marina & Schmid Timo, 2023. "Small Area with Multiply Imputed Survey Data," Journal of Official Statistics, Sciendo, vol. 39(4), pages 507-533, December.
    7. Karlberg Forough, 2015. "Small Area Estimation for Skewed Data in the Presence of Zeroes," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 541-562, December.
    8. Andreea L. Erciulescu & Wayne A. Fuller, 2016. "Small Area Prediction Under Alternative Model Specifications," Statistics in Transition New Series, Polish Statistical Association, vol. 17(1), pages 9-24, March.
    9. Nandram, Balgobin & Cruze, Nathan B & Erciulescu, Andreea L & Chen, Lu, 2022. "Bayesian Small Area Models under Inequality Constraints with Benchmarking and Double Shrinkage," NASS Research Reports 327250, United States Department of Agriculture, National Agricultural Statistics Service.
    10. Yoshimori, Masayo & Lahiri, Partha, 2014. "A new adjusted maximum likelihood method for the Fay–Herriot small area model," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 281-294.
    11. Forough Karlberg, 2015. "Small Area Estimation For Skewed Data In The Presence Of Zeroes," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 541-562, December.
    12. Jiming Jiang & P. Lahiri, 2006. "Mixed model prediction and small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 1-96, June.
    13. J. N. K. Rao, 2015. "Inferential Issues In Model-Based Small Area Estimation: Some New Developments," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 491-510, December.
    14. Lu Chen & Balgobin Nandram, 2023. "Bayesian Logistic Regression Model for Sub-Areas," Stats, MDPI, vol. 6(1), pages 1-23, January.
    15. Angela Luna & Li-Chun Zhang & Alison Whitworth & Kirsten Piller, 2015. "Small Area Estimates Of The Population Distribution By Ethnic Group In England: A Proposal Using Structure Preserving Estimators," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 585-602, December.
    16. Rao J. N. K., 2015. "Inferential Issues in Model-Based Small Area Estimation: Some New Developments," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 491-510, December.
    17. Berg, Emily & Chandra, Hukum, 2014. "Small area prediction for a unit-level lognormal model," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 159-175.
    18. Berg Emily, 2022. "Construction of Databases for Small Area Estimation," Journal of Official Statistics, Sciendo, vol. 38(3), pages 673-708, September.
    19. Hormoz SOHRABI, 2018. "Adaptive k-tree sample plot for the estimation of stem density: An empirical approach," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 64(1), pages 17-24.
    20. Thomas Zimmermann, 2019. "Einsatzmöglichkeiten von Small Area-Verfahren bei Kohortenschätzungen im Zensus 2021 [Applicablity of small area estimation methods for demographic cohorts in the Census 2021]," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 13(2), pages 157-177, September.
    21. Forough Karlberg, 2015. "Small area estimation for skewed data in the presence of zeroes," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 541-562, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:10:p:2949-2962. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.