IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v55y2018i1d10.1007_s00181-018-1452-5.html
   My bibliography  Save this article

The spatial empirical Bayes predictor of the small area mean for a lognormal variable of interest and spatially correlated random effects

Author

Listed:
  • Dian Handayani

    (State University of Jakarta
    University of Groningen
    Bogor Agricultural University)

  • Henk Folmer

    (University of Groningen
    Northwest Agriculture and Forestry University)

  • Anang Kurnia

    (Bogor Agricultural University)

  • Khairil Anwar Notodiputro

    (Bogor Agricultural University)

Abstract

The standard small area estimator, the empirical best linear unbiased predictor (EBLUP), estimates small area parameters by way of linear mixed models. The EBLUP assumes normal and independent random small area effects as well as normal and independent random sampling errors. Under these assumptions, the variable of interest also follows a normal distribution. In practice, however, the above assumptions are often violated. The variable of interest is often non-normal and highly skewed, and the small areas are frequently spatially dependent. In this paper, we propose the spatial empirical Bayes predictor (SEBP) of the small area mean of a positively skewed variable of interest in the presence of spatial dependence among the random small area effects. We assume that the variable of interest follows a normal distribution after a log transformation and that its log transform is linked to some auxiliary variables by a nested error regression model. The SEBP is derived under the log-transformed nested error regression model. By way of simulation, we show that compared to its alternatives, i.e., the direct estimator which is solely based on the survey data for the small area under study, the EBLUP which does not take into account spatial dependence and skewness, the empirical Bayes predictor which takes into account skewness but not spatial dependence among the small areas, the SEBP has the smallest average relative bias and average relative root-mean-squared error for various combinations—though not all—of skewness and spatial correlation.

Suggested Citation

  • Dian Handayani & Henk Folmer & Anang Kurnia & Khairil Anwar Notodiputro, 2018. "The spatial empirical Bayes predictor of the small area mean for a lognormal variable of interest and spatially correlated random effects," Empirical Economics, Springer, vol. 55(1), pages 147-167, August.
  • Handle: RePEc:spr:empeco:v:55:y:2018:i:1:d:10.1007_s00181-018-1452-5
    DOI: 10.1007/s00181-018-1452-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-018-1452-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-018-1452-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Berg, Emily & Chandra, Hukum, 2014. "Small area prediction for a unit-level lognormal model," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 159-175.
    2. Monica Pratesi & Nicola Salvati, 2008. "Small area estimation: the EBLUP estimator based on spatially correlated random area effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 17(1), pages 113-141, February.
    3. Forough Karlberg, 2000. "Population total prediction under a lognormal superpopulation model," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3-4), pages 53-80.
    4. Wang, Junyuan & Fuller, Wayne A., 2003. "The Mean Squared Error of Small Area Predictors Constructed With Estimated Area Variances," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 716-723, January.
    5. Isabel Molina & Nicola Salvati & Monica Pratesi, 2009. "Bootstrap for estimating the MSE of the Spatial EBLUP," Computational Statistics, Springer, vol. 24(3), pages 441-458, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. I. Gede Nyoman Mindra Jaya & Henk Folmer, 2020. "Bayesian spatiotemporal mapping of relative dengue disease risk in Bandung, Indonesia," Journal of Geographical Systems, Springer, vol. 22(1), pages 105-142, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kordos Jan, 2016. "Development of Small Area Estimation in Official Statistics," Statistics in Transition New Series, Statistics Poland, vol. 17(1), pages 105-132, March.
    2. Jan Kordos, 2016. "Development Of Smallarea Estimation In Official Statistics," Statistics in Transition New Series, Polish Statistical Association, vol. 17(1), pages 105-132, March.
    3. repec:csb:stintr:v:17:y:2016:i:1:p:105-132 is not listed on IDEAS
    4. J. N. K. Rao, 2015. "Inferential issues in model-based small area estimation: some new developments," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 491-510, December.
    5. Karlberg Forough, 2015. "Small Area Estimation for Skewed Data in the Presence of Zeroes," Statistics in Transition New Series, Statistics Poland, vol. 16(4), pages 541-562, December.
    6. Tomasz Ża̧dło, 2015. "On longitudinal moving average model for prediction of subpopulation total," Statistical Papers, Springer, vol. 56(3), pages 749-771, August.
    7. Forough Karlberg, 2015. "Small Area Estimation For Skewed Data In The Presence Of Zeroes," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 541-562, December.
    8. J. N. K. Rao, 2015. "Inferential Issues In Model-Based Small Area Estimation: Some New Developments," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 491-510, December.
    9. Rao J. N. K., 2015. "Inferential Issues in Model-Based Small Area Estimation: Some New Developments," Statistics in Transition New Series, Statistics Poland, vol. 16(4), pages 491-510, December.
    10. Berg, Emily & Chandra, Hukum, 2014. "Small area prediction for a unit-level lognormal model," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 159-175.
    11. Marhuenda, Yolanda & Molina, Isabel & Morales, Domingo, 2013. "Small area estimation with spatio-temporal Fay–Herriot models," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 308-325.
    12. Caterina Giusti & Lucio Masserini & Monica Pratesi, 2017. "Local Comparisons of Small Area Estimates of Poverty: An Application Within the Tuscany Region in Italy," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 131(1), pages 235-254, March.
    13. Anna Sikov & José Cerda-Hernandez, 2024. "Prediction in non-sampled areas under spatial small area models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(4), pages 1079-1116, September.
    14. Tomasz .Zk{a}d{l}o & Adam Chwila, 2024. "A step towards the integration of machine learning and small area estimation," Papers 2402.07521, arXiv.org.
    15. Forough Karlberg, 2015. "Small area estimation for skewed data in the presence of zeroes," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 541-562, December.
    16. Miguel Boubeta & María José Lombardía & Domingo Morales, 2024. "Small area prediction of proportions and counts under a spatial Poisson mixed model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(4), pages 1193-1215, September.
    17. Rebecca C. Steorts & Timo Schmid & Nikos Tzavidis, 2020. "Smoothing and Benchmarking for Small Area Estimation," International Statistical Review, International Statistical Institute, vol. 88(3), pages 580-598, December.
    18. Luis Pereira & Pedro Coelho, 2013. "Estimation of house prices in regions with small sample sizes," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 50(2), pages 603-621, April.
    19. David Buil-Gil & Juanjo Medina & Natalie Shlomo, 2021. "Measuring the dark figure of crime in geographic areas: Small area estimation from the Crime Survey for England and Wales [From Broken Windows to Busy Streets: A Community Empowerment Perspective’]," The British Journal of Criminology, Centre for Crime and Justice Studies, vol. 61(2), pages 364-388.
    20. repec:csb:stintr:v:17:y:2016:i:1:p:9-24 is not listed on IDEAS
    21. Jan Pablo Burgard & Domingo Morales & Anna-Lena Wölwer, 2022. "Small area estimation of socioeconomic indicators for sampled and unsampled domains," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(2), pages 287-314, June.
    22. Yogi Vidyattama & Robert Tanton & Nicholas Biddle, 2015. "Estimating small-area Indigenous cultural participation from synthetic survey data," Environment and Planning A, , vol. 47(5), pages 1211-1228, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:55:y:2018:i:1:d:10.1007_s00181-018-1452-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.