IDEAS home Printed from https://ideas.repec.org/p/tky/fseres/2012cf832.html
   My bibliography  Save this paper

Mixed Effects Prediction under Benchmarking and Applications to Small Area Estimation

Author

Listed:
  • Tatsuya Kubokawa

    (Faculty of Economics, University of Tokyo)

Abstract

The empirical best linear unbiased predictor (EBLUP) in the linear mixed model (LMM) is useful for the small area estimation in the sense of increasing the precision of estimation of small area means. However, one potential difficulty of EBLUP is that when aggregated, the overall estimate for a larger geographical area may be quite different from the corresponding direct estimate like the overall sample mean. One way to solve this problem is the benchmarking approach, and the constrained EBLUP is a feasible solution which satisfies the constraints that the aggregated mean and variance are identical to the requested values of mean and variance. An interesting query is whether the constrained EBLUP may have a larger estimation error than EBLUP. In this paper, we address this issue by deriving asymptotic approximations of MSE of the constrained EBLUP. Also, we provide asymptotic unbiased estimators of the MSE of the constrained EBLUP based on the parametric bootstrap method, and establish their second-order justification. Finally, the performances of the suggested MSE estimators are numerically investigated.

Suggested Citation

  • Tatsuya Kubokawa, 2012. "Mixed Effects Prediction under Benchmarking and Applications to Small Area Estimation," CIRJE F-Series CIRJE-F-832, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2012cf832
    as

    Download full text from publisher

    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2012/2012cf832.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gauri Sankar Datta & J. N. K. Rao & David Daniel Smith, 2005. "On measuring the variability of small area estimators under a basic area level model," Biometrika, Biometrika Trust, vol. 92(1), pages 183-196, March.
    2. G. Datta & M. Ghosh & R. Steorts & J. Maples, 2011. "Bayesian benchmarking with applications to small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 574-588, November.
    3. Kubokawa, Tatsuya & Nagashima, Bui, 2012. "Parametric bootstrap methods for bias correction in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 1-16.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tatsuya Kubokawa & Mana Hasukawa & Kunihiko Takahashi, 2014. "On Measuring Uncertainty of Benchmarked Predictors with Application to Disease Risk Estimate," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 394-413, June.
    2. Tatsuya Kubokawa & Mana Hasukawa & Kunihiko Takahashi, 2012. "On Measuring Uncertainty of Benchmarked Predictors with Application to Disease Risk Estimatee," CIRJE F-Series CIRJE-F-861, CIRJE, Faculty of Economics, University of Tokyo.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malay Ghosh & Tatsuya Kubokawa & Yuki Kawakubo, 2014. "Benchmarked Empirical Bayes Methods in Multiplicative Area-level Models with Risk Evaluation," CIRJE F-Series CIRJE-F-918, CIRJE, Faculty of Economics, University of Tokyo.
    2. Malay Ghosh, 2020. "Small area estimation: its evolution in five decades," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 1-22, August.
    3. Tatsuya Kubokawa & William E. Strawderman, 2011. "Admissibility and Minimaxity of Benchmarked Shrinkage Estimators," CIRJE F-Series CIRJE-F-809, CIRJE, Faculty of Economics, University of Tokyo.
    4. Hiromasa Tamae & Tatsuya Kubokawa, 2015. "Small Area Predictors with Dual Shrinkage of Means and Variances," CIRJE F-Series CIRJE-F-982, CIRJE, Faculty of Economics, University of Tokyo.
    5. Ghosh Malay, 2020. "Small area estimation: its evolution in five decades," Statistics in Transition New Series, Statistics Poland, vol. 21(4), pages 1-22, August.
    6. Kubokawa, Tatsuya, 2013. "Constrained empirical Bayes estimator and its uncertainty in normal linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 377-392.
    7. Kubokawa, Tatsuya & Nagashima, Bui, 2012. "Parametric bootstrap methods for bias correction in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 1-16.
    8. Tatsuya Kubokawa & Mana Hasukawa & Kunihiko Takahashi, 2012. "On Measuring Uncertainty of Benchmarked Predictors with Application to Disease Risk Estimatee," CIRJE F-Series CIRJE-F-861, CIRJE, Faculty of Economics, University of Tokyo.
    9. J. N. K. Rao, 2015. "Inferential issues in model-based small area estimation: some new developments," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 491-510, December.
    10. repec:csb:stintr:v:17:y:2016:i:1:p:9-24 is not listed on IDEAS
    11. Erciulescu Andreea L. & Fuller Wayne A., 2016. "Small Area Prediction Under Alternative Model Specifications," Statistics in Transition New Series, Statistics Poland, vol. 17(1), pages 9-24, March.
    12. Stefano Marchetti & Luca Secondi, 2017. "Estimates of Household Consumption Expenditure at Provincial Level in Italy by Using Small Area Estimation Methods: “Real” Comparisons Using Purchasing Power Parities," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 131(1), pages 215-234, March.
    13. Lixia Diao & David D. Smith & Gauri Sankar Datta & Tapabrata Maiti & Jean D. Opsomer, 2014. "Accurate Confidence Interval Estimation of Small Area Parameters Under the Fay–Herriot Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 497-515, June.
    14. Tatsuya Kubokawa & Shonosuke Sugasawa & Malay Ghosh & Sanjay Chaudhuri, 2014. "Prediction in Heteroscedastic Nested Error Regression Models with Random Dispersions," CIRJE F-Series CIRJE-F-939, CIRJE, Faculty of Economics, University of Tokyo.
    15. Md. Mizanur Rahman & Deluar J. Moloy & Md. Sifat Ar Salan, 2021. "Evaluating the Approaches of Small Area Estimation Using Poverty Mapping Data," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 10(2), pages 1-1.
    16. Malay Ghosh & Rebecca Steorts, 2013. "Two-stage benchmarking as applied to small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(4), pages 670-687, November.
    17. Benavent, Roberto & Morales, Domingo, 2016. "Multivariate Fay–Herriot models for small area estimation," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 372-390.
    18. Masahiro Kojima & Tatsuya Kubokawa, 2013. "Bartlett Adjustments for Hypothesis Testing in Linear Models with General Error Covariance Matrices," CIRJE F-Series CIRJE-F-884, CIRJE, Faculty of Economics, University of Tokyo.
    19. Andreea L. Erciulescu & Wayne A. Fuller, 2016. "Small Area Prediction Under Alternative Model Specifications," Statistics in Transition New Series, Polish Statistical Association, vol. 17(1), pages 9-24, March.
    20. Shonosuke Sugasawa & Tatsuya Kubokawa, 2013. " Parametric Transformed Fay-Herriot Model for Small Area Estimation ," CIRJE F-Series CIRJE-F-911, CIRJE, Faculty of Economics, University of Tokyo.
    21. Kawakubo, Yuki & Kubokawa, Tatsuya, 2014. "Modified conditional AIC in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 44-56.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2012cf832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CIRJE administrative office (email available below). General contact details of provider: https://edirc.repec.org/data/ritokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.