IDEAS home Printed from https://ideas.repec.org/p/tky/fseres/2003cf205.html
   My bibliography  Save this paper

Regression Quantiles for Unstable Autoregressive Models

Author

Listed:
  • Shiqing Ling

    (Department of Mathematics, Hong Kong University of Science and Technology)

  • Michael McAleer

    (Department of Economics, University of Western Australia)

Abstract

This paper investigates regression quantiles(RQ) for unstable autoregressive models. This uniform Bahadur representation of the RQ process is obtained. The joint asymptotic distribution of the RQ process is derived in a unified manner for all types of characteristic roots on or outside the unit circle. It involves stochastic integrals in terms of a wequence of independent and identically distributed multivariate Brownian motions with correlated components. The related L -estimator is also discussed. The asymptotic distributions of the RQ and the L -estimator corresponding to the nonstationary componentwise arguments can be transformed into a function of a normal random variable and a sequence of i.i.d. univariate Brownian motions. This is different from the analysis based on the lSE in the literature. As an auxiliary theorem, a weak convergence of a randomly weighted residual empirical process to the stochastic integral of a Kiefer process is established. The results obtained in this paper provide an asymptotic theory for nonstationary time series processes, which can be used to construct robust unit root tests.

Suggested Citation

  • Shiqing Ling & Michael McAleer, 2003. "Regression Quantiles for Unstable Autoregressive Models," CIRJE F-Series CIRJE-F-205, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2003cf205
    as

    Download full text from publisher

    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2003/2003cf205.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Herce, Miguel A., 1996. "Asymptotic Theory of LAD Estimation in a Unit Root Process with Finite Variance Errors," Econometric Theory, Cambridge University Press, vol. 12(1), pages 129-153, March.
    2. P. C. B. Phillips & S. N. Durlauf, 1986. "Multiple Time Series Regression with Integrated Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 473-495.
    3. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    4. Hansen, Bruce E., 1995. "Rethinking the Univariate Approach to Unit Root Testing: Using Covariates to Increase Power," Econometric Theory, Cambridge University Press, vol. 11(5), pages 1148-1171, October.
    5. Koenker, Roger & Bassett, Gilbert, Jr, 1982. "Robust Tests for Heteroscedasticity Based on Regression Quantiles," Econometrica, Econometric Society, vol. 50(1), pages 43-61, January.
    6. M. N. Hasan & R. W. Koenker, 1997. "Robust Rank Tests of the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 65(1), pages 133-162, January.
    7. Peter C. B. Phillips & Zhijie Xiao, 1998. "A Primer on Unit Root Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 12(5), pages 423-470, December.
    8. Phillips, P.C.B., 1989. "Partially Identified Econometric Models," Econometric Theory, Cambridge University Press, vol. 5(2), pages 181-240, August.
    9. Lucas, André, 1995. "Unit Root Tests Based on M Estimators," Econometric Theory, Cambridge University Press, vol. 11(2), pages 331-346, February.
    10. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    11. Jeganathan, P., 1991. "On the Asymptotic Behavior of Least-Squares Estimators in AR Time Series with Roots Near the Unit Circle," Econometric Theory, Cambridge University Press, vol. 7(3), pages 269-306, September.
    12. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    13. repec:bla:jecsur:v:12:y:1998:i:5:p:423-69 is not listed on IDEAS
    14. van der Meer, Tjacco & Pap, Gyula & van Zuijlen, Martien C.A., 1999. "ASYMPTOTIC INFERENCE FOR NEARLY UNSTABLE AR(p) PROCESSES," Econometric Theory, Cambridge University Press, vol. 15(2), pages 184-217, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Uwe Hassler & Paulo M.M. Rodrigues & Antonio Rubia, 2016. "Quantile Regression for Long Memory Testing: A Case of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 14(4), pages 693-724.
    2. D. M. Mahinda Samarakoon & Keith Knight, 2009. "A Note on Unit Root Tests with Infinite Variance Noise," Econometric Reviews, Taylor & Francis Journals, vol. 28(4), pages 314-334.
    3. Christis Katsouris, 2022. "Asymptotic Theory for Unit Root Moderate Deviations in Quantile Autoregressions and Predictive Regressions," Papers 2204.02073, arXiv.org, revised Aug 2023.
    4. Guodong Li & Yang Li & Chih-Ling Tsai, 2015. "Quantile Correlations and Quantile Autoregressive Modeling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 246-261, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shiqing Ling & W. K. Li & Michael McAleer, 2003. "Estimation and Testing for Unit Root Processes with GARCH (1, 1) Errors: Theory and Monte Carlo Evidence," Econometric Reviews, Taylor & Francis Journals, vol. 22(2), pages 179-202.
    2. Michael Jansson, 2008. "Semiparametric Power Envelopes for Tests of the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 76(5), pages 1103-1142, September.
    3. Dong Wan Shin & Oesook Lee, 2004. "M‐Estimation for regressions with integrated regressors and arma errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(2), pages 283-299, March.
    4. Rickard Sandberg, 2015. "M-estimator based unit root tests in the ESTAR framework," Statistical Papers, Springer, vol. 56(4), pages 1115-1135, November.
    5. Narayan, Paresh Kumar & Liu, Ruipeng & Westerlund, Joakim, 2016. "A GARCH model for testing market efficiency," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 41(C), pages 121-138.
    6. Galvao Jr., Antonio F., 2009. "Unit root quantile autoregression testing using covariates," Journal of Econometrics, Elsevier, vol. 152(2), pages 165-178, October.
    7. Charles G. Renfro, 2009. "The Practice of Econometric Theory," Advanced Studies in Theoretical and Applied Econometrics, Springer, number 978-3-540-75571-5, July-Dece.
    8. Peter C.B. Phillips, 1994. "Nonstationary Time Series and Cointegration: Recent Books and Themes for the Future," Cowles Foundation Discussion Papers 1081, Cowles Foundation for Research in Economics, Yale University.
    9. Christis Katsouris, 2023. "Bootstrapping Nonstationary Autoregressive Processes with Predictive Regression Models," Papers 2307.14463, arXiv.org.
    10. Werner Ploberger & Peter C.B. Phillips, 1998. "Rissanen's Theorem and Econometric Time Series," Cowles Foundation Discussion Papers 1197, Cowles Foundation for Research in Economics, Yale University.
    11. Terence C. Mills, 2012. "Semi-parametric modelling of temperature records," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(2), pages 361-383, May.
    12. Ploberger, Werner & Phillips, Peter C.B., 2012. "Optimal estimation under nonstandard conditions," Journal of Econometrics, Elsevier, vol. 169(2), pages 258-265.
    13. Uwe Hassler & Paulo M.M. Rodrigues & Antonio Rubia, 2016. "Quantile Regression for Long Memory Testing: A Case of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 14(4), pages 693-724.
    14. Christis Katsouris, 2022. "Asymptotic Theory for Unit Root Moderate Deviations in Quantile Autoregressions and Predictive Regressions," Papers 2204.02073, arXiv.org, revised Aug 2023.
    15. Peter C. B. Phillips & Zhijie Xiao, 1998. "A Primer on Unit Root Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 12(5), pages 423-470, December.
    16. So, Beong Soo & Shin, Dong Wan, 2001. "An invariant sign test for random walks based on recursive median adjustment," Journal of Econometrics, Elsevier, vol. 102(2), pages 197-229, June.
    17. Peter Phillips & Hyungsik Moon, 2000. "Nonstationary panel data analysis: an overview of some recent developments," Econometric Reviews, Taylor & Francis Journals, vol. 19(3), pages 263-286.
    18. Cosme Vodounou, 1998. "Inférence fondée sur les statistiques des rendements de long terme," CIRANO Working Papers 98s-20, CIRANO.
    19. Guili Liao & Qimeng Liu & Rongmao Zhang & Shifang Zhang, 2022. "Rank test of unit‐root hypothesis with AR‐GARCH errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(5), pages 695-719, September.
    20. Peter C. B. Phillips, 2003. "Laws and Limits of Econometrics," Economic Journal, Royal Economic Society, vol. 113(486), pages 26-52, March.

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2003cf205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CIRJE administrative office (email available below). General contact details of provider: https://edirc.repec.org/data/ritokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.